Your browser doesn't support javascript.
loading
Calcium phosphate bone cement and biodegradable mesh-like microporous balloon for vertebroplasty / 中国组织工程研究
Chinese Journal of Tissue Engineering Research ; (53): 7566-7572, 2014.
Artigo em Chinês | WPRIM | ID: wpr-457876
ABSTRACT

BACKGROUND:

In vitro experiments have demonstrated that the biodegradable mesh-like microporous baloon made of macromolecular materials has obvious advantage of anti-leakage, which is capable of maintaining calcium homeostasis, has no inhibitory effects on cel growth and on microscopic interdigitation formation between new bone and bone cement.

OBJECTIVE:

To evaluate the therapeutic effects of biodegradable mesh-like microporous baloon with calcium bone cement on vertebral fractures based on animal experiments.

METHODS:

The fracture model was established in 48 New Zealand rabbits, in which a bone dril was introduced after successful puncture at sites near left low extremity of the femur. These rabbit models were randomized into two groups experimental group with calcium phosphate bone cement and biodegradable mesh-like microporous baloon and control group only with calcium phosphate bone cement. Clinical parameters such as blood cel count, biochemistry, and CT/X ray were examined at 1, 3 and 6 months after implantation of the baloon and bone cement. After that, the specimens were fixed for pathological analysis. RESULTS AND

CONCLUSION:

The operation was performed under general anesthesia with no eventful infusion of bone cement. The expansion of baloon was satisfactory without definite extravasation of bone cement in the experimental group. In the control group, cement diffusion was found with pulmonary embolism occurring in three New Zealand rabbits. No statistical significance for blood cel counts and biochemistry was found between pre- and postoperation or between two groups. The materials in the two groups had favorable biocompatibility with injured bones without obvious immunological response. In the experimental group, the baloon wal was thinned and partial bone tissues grew into the cement at 1 month; at 3 months, a large amount of bone tissues grew into the cement and cement volume diminished; at 6 months, the baloon disappeared and only a smal amount of cement left in the bone tissues. In the control group, it was difficult to determine when the cement degraded. The biodegradable mesh-like microporous baloon combined with calcium bone cement is superior to bone cement alone in the management of vertebral fractures.

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Tipo de estudo: Ensaio Clínico Controlado Idioma: Chinês Revista: Chinese Journal of Tissue Engineering Research Ano de publicação: 2014 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Tipo de estudo: Ensaio Clínico Controlado Idioma: Chinês Revista: Chinese Journal of Tissue Engineering Research Ano de publicação: 2014 Tipo de documento: Artigo