Your browser doesn't support javascript.
loading
Inhibition of Toll-like receptor 9 activation in microglia after oxygen-glu-cose deprivation and reoxygenation protects neurons from damage / 中国病理生理杂志
Chinese Journal of Pathophysiology ; (12): 403-408, 2015.
Artigo em Chinês | WPRIM | ID: wpr-474022
ABSTRACT

AIM:

To observe the Toll-like receptor 9 (TLR9) activation in microglia BV-2 cells after oxygen-glucose deprivation and reoxygenation ( OGDR) , and its effects on neuronal apoptosis.

METHODS:

The BV-2 cell super-natants were collected after the corresponding treatment and added to mouse primary cortical neurons after OGDR for 4 h, followed by normal culture for 24 h.The cells were divided into normal BV-2 group, NC-siRNA group, TLR9-siRNA group, OGDR group, OGDR+NC-siRNA group, OGDR+TLR9-siRNA group and control group (without adding BV-2 cell supernatant) .The changes of the neuronal morphology were observed under an inverted phase-contrast microscope, and the neuronal apoptosis was detected by TUNEL.The protein expression of cleaved caspase-3 was detected by Western blot-ting.

RESULTS:

After OGDR, the axon turned thin, twisted and broken, and neuronal swelling, decrease in refraction and vacuolar degeneration were observed.The green-stained apoptotic bodies in the neurons in all groups were positive. Compared with control group, the caspase-3 protein levels in other groups were increased.Compared with the normal BV-2 group, the caspase-3 protein in OGDR group and TLR9-siRNA group was increased.Compared with OGDR+TLR9-siRNA group, the caspase-3 protein in TLR9-siRNA group and OGDR group was decreased.

CONCLUSION:

After OGDR, TLR9 activation in BV-2 cells induces neuronal apoptosis with the increase in caspase-3 protein level.Inhibition of TLR9 expression reduces neuronal damage.

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Idioma: Chinês Revista: Chinese Journal of Pathophysiology Ano de publicação: 2015 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Idioma: Chinês Revista: Chinese Journal of Pathophysiology Ano de publicação: 2015 Tipo de documento: Artigo