Your browser doesn't support javascript.
loading
Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies
Experimental & Molecular Medicine ; : e147-2015.
Artigo em Inglês | WPRIM | ID: wpr-57308
ABSTRACT
Mammalian cells remove misfolded proteins using various proteolytic systems, including the ubiquitin (Ub)-proteasome system (UPS), chaperone mediated autophagy (CMA) and macroautophagy. The majority of misfolded proteins are degraded by the UPS, in which Ub-conjugated substrates are deubiquitinated, unfolded and cleaved into small peptides when passing through the narrow chamber of the proteasome. The substrates that expose a specific degradation signal, the KFERQ sequence motif, can be delivered to and degraded in lysosomes via the CMA. Aggregation-prone substrates resistant to both the UPS and the CMA can be degraded by macroautophagy, in which cargoes are segregated into autophagosomes before degradation by lysosomal hydrolases. Although most misfolded and aggregated proteins in the human proteome can be degraded by cellular protein quality control, some native and mutant proteins prone to aggregation into beta-sheet-enriched oligomers are resistant to all known proteolytic pathways and can thus grow into inclusion bodies or extracellular plaques. The accumulation of protease-resistant misfolded and aggregated proteins is a common mechanism underlying protein misfolding disorders, including neurodegenerative diseases such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), prion diseases and Amyotrophic Lateral Sclerosis (ALS). In this review, we provide an overview of the proteolytic pathways in neurons, with an emphasis on the UPS, CMA and macroautophagy, and discuss the role of protein quality control in the degradation of pathogenic proteins in neurodegenerative diseases. Additionally, we examine existing putative therapeutic strategies to efficiently remove cytotoxic proteins from degenerating neurons.
Assuntos
Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Assunto principal: Doença de Parkinson / Autofagia / Superóxido Dismutase / Peptídeos beta-Amiloides / Proteínas tau / Doenças Priônicas / Doença de Huntington / Proteínas PrPSc / Doenças Neurodegenerativas / Ubiquitina Limite: Animais / Humanos Idioma: Inglês Revista: Experimental & Molecular Medicine Ano de publicação: 2015 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Assunto principal: Doença de Parkinson / Autofagia / Superóxido Dismutase / Peptídeos beta-Amiloides / Proteínas tau / Doenças Priônicas / Doença de Huntington / Proteínas PrPSc / Doenças Neurodegenerativas / Ubiquitina Limite: Animais / Humanos Idioma: Inglês Revista: Experimental & Molecular Medicine Ano de publicação: 2015 Tipo de documento: Artigo