Feasibility of Automated Quantification of Regional Disease Patterns Depicted on High-Resolution Computed Tomography in Patients with Various Diffuse Lung Diseases
Korean j. radiol
; Korean j. radiol;: 455-463, 2009.
Article
em En
| WPRIM
| ID: wpr-72778
Biblioteca responsável:
WPRO
ABSTRACT
OBJECTIVE: This study was designed to develop an automated system for quantification of various regional disease patterns of diffuse lung diseases as depicted on high-resolution computed tomography (HRCT) and to compare the performance of the automated system with human readers. MATERIALS AND METHODS: A total of 600 circular regions-of-interest (ROIs), 10 pixels in diameter, were utilized. The 600 ROIs comprised 100 ROIs that represented six typical regional patterns (normal, ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation). The ROIs were used to train the automated classification system based on the use of a Support Vector Machine classifier and 37 features of texture and shape. The performance of the classification system was tested with a 5-fold cross-validation method. An automated quantification system was developed with a moving ROI in the lung area, which helped classify each pixel into six categories. A total of 92 HRCT images obtained from patients with different diseases were used to validate the quantification system. Two radiologists independently classified lung areas of the same CT images into six patterns using the manual drawing function of dedicated software. Agreement between the automated system and the readers and between the two individual readers was assessed. RESULTS: The overall accuracy of the system to classify each disease pattern based on the typical ROIs was 89%. When the quantification results were examined, the average agreement between the system and each radiologist was 52% and 49%, respectively. The agreement between the two radiologists was 67%. CONCLUSION: An automated quantification system for various regional patterns of diffuse interstitial lung diseases can be used for objective and reproducible assessment of disease severity.
Palavras-chave
Texto completo:
1
Índice:
WPRIM
Assunto principal:
Reconhecimento Automatizado de Padrão
/
Interpretação de Imagem Radiográfica Assistida por Computador
/
Tomografia Computadorizada por Raios X
/
Variações Dependentes do Observador
/
Estudos de Viabilidade
/
Sensibilidade e Especificidade
/
Doenças Pulmonares Intersticiais
Tipo de estudo:
Diagnostic_studies
Limite:
Humans
Idioma:
En
Revista:
Korean j. radiol
Ano de publicação:
2009
Tipo de documento:
Article