The regulation and gating mechanism of Cav1.2 current by KCNE1 subunit / 中华急诊医学杂志
Chinese Journal of Emergency Medicine
; (12): 1365-1369, 2018.
Article
em Zh
| WPRIM
| ID: wpr-732902
Biblioteca responsável:
WPRO
ABSTRACT
Objective To explore the regulation and mechanism of Cav1.2 current by KCNE1. Methods Transient transfection was used to transfer Cav1.2 channel plasmids separately or together with KCNE1 plasmids into HEK293 cells. The experiment was divided into 2 groups (15 cells in each group):Cav1.2 group, Cav1.2+KCNE1 group.The whole-cell patch clamp technique was used to record Cav1.2 current and gating dynamics. Results After co-transfection of KCNE1 with Cav1.2, Cav1.2 current decreased significantly. At 0 mV, peak current density of Cav1.2 was reduced from (-14.8±2.5) pA/pF to (-7.5±1.6) pA/pF (n=15, P<0.01). Based on the gate control mechanism, it is found that the regulation of Cav1.2 current by KCNE1 mainly makes the steady-state inactivation curve of the channel shifted to a more negative direction, thus accelerating the inactivation. Meanwhile, the recovery process of the channel after inactivation is slowed down and the recovery time constant was prolonged. Conclusions The KCNE1 subunit can reduce the current density of Cav1.2 by changing the channel inactivation and recovery process.
Texto completo:
1
Índice:
WPRIM
Idioma:
Zh
Revista:
Chinese Journal of Emergency Medicine
Ano de publicação:
2018
Tipo de documento:
Article