Your browser doesn't support javascript.
loading
Construction of acellular porcine bladder scaffolds / 中国组织工程研究
Chinese Journal of Tissue Engineering Research ; (53): 572-576, 2020.
Artigo em Chinês | WPRIM | ID: wpr-848141
ABSTRACT

BACKGROUND:

Bladder repair is currently one of the main treatments for bladder defects. Homologous tissue is less affected by various factors. Tissue engineered acellular bladder matrix has become an increasing area of interest. Porcine bladder acellular matrix has a wide range of sources and has a natural extracellular scaffold structure, which has become a hot topic in tissue engineering bladder substitute materials.

OBJECTIVE:

To explore the feasibility of acellular porcine bladder as a tissue engineering scaffold material.

METHODS:

The cell-free matrix of pig bladder was prepared by liquid nitrogen freezing and thawing, dodecyl sodium sulfate and trypsin decellularization method. According to different decellularization methods, pig bladders were divided into normal control group (without any treatment), experimental group (treated with 0.6% trypsin and 5% sodium lauryl sulfate (pH 8.0)) and acellular control group (treated with 0.75% trypsin (pH 8.0), 1% trypsin (pH 8.0), 5% sodium lauryl sulfate (pH 7.6) or 10% sodium dodecyl sulfate (pH 7.6)). The decellularization effect of pig bladder was observed by hematoxylin-eosin staining, van Gieson staining, DNA quantification, and α-Gal antigen detection. RESULTS AND

CONCLUSION:

Hematoxylin-eosin staining revealed that in the experimental group, the components of the bladder cells of the pigs were basically removed. van Gieson staining revealed that the DNA residues and α-Gal antigen residues in the cells were significantly lower than those in the control group (P < 0.05). These results suggest that treatment of pig bladder with 0.6% trypsin and 5% sodium dodecyl sulfate can effectively remove its cellular components while retaining the extracellular matrix of porcine bladder tissue. This provides a reference value for constructing accelular porcine bladder scaffolds.

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Idioma: Chinês Revista: Chinese Journal of Tissue Engineering Research Ano de publicação: 2020 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Idioma: Chinês Revista: Chinese Journal of Tissue Engineering Research Ano de publicação: 2020 Tipo de documento: Artigo