Your browser doesn't support javascript.
loading
Phospholipid peroxidation: a key factor in "susceptibility" to neurodegenerative diseases / 药学学报
Acta Pharmaceutica Sinica ; (12): 2154-2163, 2021.
Artigo em Chinês | WPRIM | ID: wpr-887040
ABSTRACT
The biochemical integrity of the brain is necessary to maintain normal function. Oxidative damage is one of the mortal important reasons leading to the destruction of this integrity. The nervous system is enriched in phospholipid and polyunsaturated fatty acids (PUFAs). Due to the nature of high oxygen-consumption and rich lipids, brain is particularly vulnerable to oxidative damages. Phospholipid peroxidation is one of the results of imbalance in oxidation-antioxidant system. Once the antioxidant system is insufficient to resist oxidative damage, membrane phospholipids will be prone to free radical attack. Phospholipid peroxidation leads to a variety of toxic oxidation products, including membrane damage, mitochondrial dysfunction, rapid accumulation of amyloid, etc. Multiple proteins and nucleic acids can be covalently modified by peroxidation products, resulting in the loss of the protein functions, which eventually triggers programmed cell death and general neuroinflammation in brain, and ends up with an increased susceptibility to neurodegenerative diseases. Based on the knowledge of mechanisms of phospholipid peroxidation, this review focuses on the characteristics of phospholipid peroxidation as a key factor in the development of neurodegenerative diseases, in order to provide theoretical basis for targeted intervention of phospholipid peroxidation as a potential strategy to prevent neurodegenerative diseases.

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Idioma: Chinês Revista: Acta Pharmaceutica Sinica Ano de publicação: 2021 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Idioma: Chinês Revista: Acta Pharmaceutica Sinica Ano de publicação: 2021 Tipo de documento: Artigo