Your browser doesn't support javascript.
loading
Construction of an adenovirus vector expressing engineered splicing factor for regulating alternative splicing of YAP1 in neonatal rat cardiomyocytes / 南方医科大学学报
Journal of Southern Medical University ; (12): 1013-1018, 2022.
Artigo em Chinês | WPRIM | ID: wpr-941034
ABSTRACT
OBJECTIVE@#To construct an adenovirus vector expressing artificial splicing factor capable of regulating alternative splicing of Yap1 in cardiomyocytes.@*METHODS@#The splicing factors with different sequences were constructed against Exon6 of YAP1 based on the sequence specificity of Pumilio1. The PCR fragment of the artificially synthesized PUF-SR or wild-type PUFSR was cloned into pAd-Track plasmid, and the recombinant plasmids were transformed into E. coli DH5α for plasmid amplification. The amplified plasmids were digested with Pac I and transfected into 293A cells for packaging to obtain the adenovirus vectors. Cultured neonatal rat cardiomyocytes were transfected with the adenoviral vectors, and alternative splicing of YAP1 was detected using quantitative and semi-quantitative PCR; Western blotting was performed to detect the signal of the fusion protein Flag.@*RESULTS@#The transfection efficiency of the adenovirus vectors was close to 100% in rat cardiomyocytes, and no fluorescent protein was detected in the cells with plasmid transfection. The results of Western blotting showed that both the negative control and Flag-SR-NLS-PUF targeting the YAPExon6XULIE sequence were capable of detecting the expression of the protein fused to Flag. The results of reverse transcription-PCR and PCR demonstrated that the artificial splicing factor constructed based on the 4th target sequence of YAP1 effectively regulated the splicing of YAP1 Exon6 in the cardiomyocytes (P < 0.05).@*CONCLUSION@#We successfully constructed adenovirus vectors capable of regulating YAP1 alternative splicing rat cardiomyocytes.
Assuntos

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Assunto principal: Plasmídeos / Transfecção / Adenoviridae / Processamento Alternativo / Miócitos Cardíacos / Escherichia coli / Fatores de Processamento de RNA / Vetores Genéticos / Animais Recém-Nascidos Limite: Animais Idioma: Chinês Revista: Journal of Southern Medical University Ano de publicação: 2022 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Assunto principal: Plasmídeos / Transfecção / Adenoviridae / Processamento Alternativo / Miócitos Cardíacos / Escherichia coli / Fatores de Processamento de RNA / Vetores Genéticos / Animais Recém-Nascidos Limite: Animais Idioma: Chinês Revista: Journal of Southern Medical University Ano de publicação: 2022 Tipo de documento: Artigo