Your browser doesn't support javascript.
loading
A Role for Transmembrane Protein 16C/Slack Impairment in Excitatory Nociceptive Synaptic Plasticity in the Pathogenesis of Remifentanil-induced Hyperalgesia in Rats / 神经科学通报·英文版
Neuroscience Bulletin ; (6): 669-683, 2021.
Artigo em Chinês | WPRIM | ID: wpr-951993
ABSTRACT
Remifentanil is widely used to control intraoperative pain. However, its analgesic effect is limited by the generation of postoperative hyperalgesia. In this study, we investigated whether the impairment of transmembrane protein 16C (TMEM16C)/Slack is required for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) activation in remifentanil-induced postoperative hyperalgesia. Remifentanil anesthesia reduced the paw withdrawal threshold from 2 h to 48 h postoperatively, with a decrease in the expression of TMEM16C and Slack in the dorsal root ganglia (DRG) and spinal cord. Knockdown of TMEM16C in the DRG reduced the expression of Slack and elevated the basal peripheral sensitivity and AMPAR expression and function. Overexpression of TMEM16C in the DRG impaired remifentanil-induced ERK1/2 phosphorylation and behavioral hyperalgesia. AMPAR-mediated current and neuronal excitability were downregulated by TMEM16C overexpression in the spinal cord. Taken together, these findings suggest that TMEM16C/Slack regulation of excitatory synaptic plasticity via GluA1-containing AMPARs is critical in the pathogenesis of remifentanil-induced postoperative hyperalgesia in rats.

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Idioma: Chinês Revista: Neuroscience Bulletin Ano de publicação: 2021 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Idioma: Chinês Revista: Neuroscience Bulletin Ano de publicação: 2021 Tipo de documento: Artigo