Your browser doesn't support javascript.
loading
Comparison of two different levels of adipose derived stem cells in fat transplantation in nude mice / 中华医学美学美容杂志
Chinese Journal of Medical Aesthetics and Cosmetology ; (6): 422-426, 2022.
Artigo em Chinês | WPRIM | ID: wpr-958750
ABSTRACT

Objective:

To explore the mechanism of fat formation induced by PLA-adipose derived stem cells (ADSC) and LAF-ADSC cells, and to provide a new direction and idea for cell-assisted granular fat transplantation.

Methods:

The liposuction operation of normal human body was performed in the plastic surgery operating room of Chengdu Badachu Medical Cosmetic Hospital. The liposuction obtained through the operation was placed still, and the upper granular adipose tissue was digested, isolated, cultured and identified by PLA-ADSC; the obtained lower liquid tissue was centrifuged, and the precipitate was digested, isolated, cultured and identified by LAF-ADSC; the differentiation characteristics and growth ability of PLA-ADSC and LAF-ADSC were compared. Then animal experiments were carried out PLA-ADSC and LAF-ADSC were mixed with matrix glue Matrigel and transplanted into nude mice as experimental group 1 and experimental group 2. Matrix glue Matrigel was transplanted into nude mice as control group. The lipogenic ability of the three groups in nude mice was compared.

Results:

The cell experiment showed that the cells extracted from the static granular fat and the lower filtrate sediment could adhere to the wall and grew and subcultured smoothly. The cells from the above two different sources expressed CD44, CD73 and CD105, with positive rates of 99.5%, 99.99% and 99.7% respectively, while CD19, CD31 and CD45 were negative. The results of lipogenic induction and differentiation showed that there were lipid droplets in the cytoplasm, and the lipid droplets were orange red after cell oil red O staining. The results of animal experiment showed that three months after transplantation, the average graft volume of experimental group 1 was (0.070±0.009) cm 3, that of experimental group 2 was (0.067±0.007) cm 3, and that of the control group was (0.009±0.005) cm 3. The difference between the graft volume of experimental group 1 and experimental group 2 and the control group was statistically significant ( t=26.522 and t=37.183, all P<0.01), There was no significant difference in graft volume ( t=1.250, P>0.05). The wet weight of grafts in experimental group 1 was (0.200±0.021) g, that in experimental group 2 was (0.175±0.019) g, and that in the control group was (0.129±0.012) g, there was significant difference between experimental groups 1 and 2 and the control group ( t=11.601 and t=9.978, P<0.05), but there was no significant difference between experimental group 1 and experimental group 2 ( t=3.650, P>0.05). After oil red O staining, the grafts in experimental groups 1 and 2 were generally orange yellow, and the control group was scattered light yellow. The expression of CD31 in the experimental groups 1 and 2 was positive, and the expression of CD31 in control group was negative.

Conclusions:

Active ADSCs can be extracted from the granular fat layer and the lower filtrate of the static fat aspirate, and the ADSCs from both sources have good lipogenic ability in nude mice.

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Idioma: Chinês Revista: Chinese Journal of Medical Aesthetics and Cosmetology Ano de publicação: 2022 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Idioma: Chinês Revista: Chinese Journal of Medical Aesthetics and Cosmetology Ano de publicação: 2022 Tipo de documento: Artigo