Your browser doesn't support javascript.
loading
Protective role and mechanism of human umbilical cord mesenchymal stem cell-derived exosome in renal ischemia-reperfusion injury / 器官移植
Organ Transplantation ; (6): 371-2023.
Artigo em Chinês | WPRIM | ID: wpr-972927
ABSTRACT
Objective To investigate the protective effect of human umbilical cord mesenchymal stem cell-derived exosome (hucMSC-Exo) on renal ischemia-reperfusion injury (IRI), and to clarify the critical role and regulating mechanism of transient receptor potential canonical (TRPC) 6/poly adenosine-diphosphate-ribose polymerase (PARP) 1 signaling pathway during this process. Methods The hucMSC-Exo was extracted by ultracentrifugation, and identified by transmission electron microscope (TEM), nanoparticle tracing analysis and Western blot. SD rats were randomly divided into the sham operation group (group S), sham operation+TRPC6 inhibitor SKF96365 group (group SS), renal IRI group (group IRI), exosome treatment group (group EXO) and exosome +TRPC6 inhibitor SKF96365 group (group ES), with 6 rats in each group. Serum creatinine and blood urea nitrogen levels were detected. Pathological changes of renal tissues were observed by hematoxylin-eosin (HE) staining and Paller score was calculated. The expression levels of key molecules of necroptosis in rat renal tissues, including receptor-interacting protein kinase (RIPK)1, RIPK3 and mixed-lineage kinase domain-like protein (MLKL), TRPC6 and PARP1, were detected by Western blot. Results Typical saucer-like structure was observed under TEM. Nanoparticle tracing analysis showed that the average diameter of the extracted substance was 125.9 nm. Western blot revealed that the surface markers of CD9, CD63 and CD81 were positively expressed, confirmed that the extracted substance was exosome. Compared with group S, the serum creatinine and blood urea nitrogen levels were up-regulated, the pathological damage of renal tissues was worsened, Paller score was elevated, the relative expression levels of TRPC6 and PARP1 proteins were down-regulated, and the relative expression levels of RIPK1, RIPK3 and MLKL proteins were up-regulated in group IRI (all P < 0.05). Compared with group IRI, the serum creatinine and blood urea nitrogen levels were down-regulated, the pathological damage of renal tissues was mitigated, Paller score was decreased, the relative expression levels of TRPC6 and PARP1 proteins were up-regulated, and the relative expression levels of RIPK1, RIPK3 and MLKL proteins were down-regulated in group EXO (all P < 0.05). Compared with group EXO, the serum creatinine and blood urea nitrogen levels were up-regulated, the pathological damage of renal tissues was aggravated, Paller score was increased, the relative expression levels of TRPC6 and PARP1 proteins were down-regulated, and the relative expression levels of RIPK1, RIPK3 and MLKL proteins were up-regulated in group ES (all P < 0.05). Conclusions hucMSC-Exo may alleviate the necroptosis induced by renal IRI in rat models, which is related to the activation of TRPC6/PARP1 signaling pathway.

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Idioma: Chinês Revista: Organ Transplantation Ano de publicação: 2023 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Idioma: Chinês Revista: Organ Transplantation Ano de publicação: 2023 Tipo de documento: Artigo