Comparison among Four Deep Learning Image Classification Algorithms in AI-based Diatom Test / 法医学杂志
J. forensic med
; Fa yi xue za zhi;(6): 31-39, 2022.
Article
em En
| WPRIM
| ID: wpr-984092
Biblioteca responsável:
WPRO
ABSTRACT
OBJECTIVES@#To select four algorithms with relatively balanced complexity and accuracy among deep learning image classification algorithms for automatic diatom recognition, and to explore the most suitable classification algorithm for diatom recognition to provide data reference for automatic diatom testing research in forensic medicine.@*METHODS@#The "diatom" and "background" small sample size data set (20 000 images) of digestive fluid smear of corpse lung tissue in water were built to train, validate and test four convolutional neural network (CNN) models, including VGG16, ResNet50, InceptionV3 and Inception-ResNet-V2. The receiver operating characteristic curve (ROC) of subjects and confusion matrixes were drawn, recall rate, precision rate, specificity, accuracy rate and F1 score were calculated, and the performance of each model was systematically evaluated.@*RESULTS@#The InceptionV3 model achieved much better results than the other three models with a balanced recall rate of 89.80%, a precision rate of 92.58%. The VGG16 and Inception-ResNet-V2 had similar diatom recognition performance. Although the performance of diatom recall and precision detection could not be balanced, the recognition ability was acceptable. ResNet50 had the lowest diatom recognition performance, with a recall rate of 55.35%. In terms of feature extraction, the four models all extracted the features of diatom and background and mainly focused on diatom region as the main identification basis.@*CONCLUSIONS@#Including the Inception-dependent model, which has stronger directivity and targeting in feature extraction of diatom. The InceptionV3 achieved the best performance on diatom identification and feature extraction compared to the other three models. The InceptionV3 is more suitable for daily forensic diatom examination.
Palavras-chave
Texto completo:
1
Índice:
WPRIM
Assunto principal:
Algoritmos
/
Curva ROC
/
Redes Neurais de Computação
/
Diatomáceas
/
Aprendizado Profundo
Limite:
Humans
Idioma:
En
Revista:
Fa yi xue za zhi
/
J. forensic med
Ano de publicação:
2022
Tipo de documento:
Article