Your browser doesn't support javascript.
loading
Effects of alum ice nanoemulsion on hypertrophic scar based on Notch signaling pathway / 国际中医中药杂志
International Journal of Traditional Chinese Medicine ; (6): 308-314, 2023.
Artigo em Chinês | WPRIM | ID: wpr-989628
ABSTRACT

Objective:

To investigate the effects of alum ice nanoemulsion on VEGF and TGF-β1 in hypertrophic scar based on Notch signaling pathway.

Methods:

Totally 144 SD rats were divided into blank control group, model group, triamcinolone acetonide group and alum ice nanoemulsion low-, medium- and high-dose groups according to random number table method, with 24 rats in each group. Except for the blank control group, the rats in other groups were prepared with deep Ⅱ ° burn models. 24 hours after the successful modeling, the model group was given the same amount of normal saline, the rats in alum ice nanoemulsion low-, medium- and high-dose groups were given 8.15, 6.30 and 32.60 mg/ml alum ice nanoemulsion respectively, and the triamcinolone acetonide group was given triamcinolone acetonide twice a day, 0.2 ml each time, for 35 consecutive days. At 14, 21, 28 and 35 d, the collagen fiber surface density was calculated by VG staining. The protein expressions of vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), Notch1 and Jagged1 were detected by Western Blot. The expressions of Notch1 mRNA and Jagged1 mRNA were detected by RT-PCR.

Results:

Compared with model group, triamcinolone acetonide and different doses of alum ice nanoemulsion groups could decrease collagen fiber surface density, protein expressions of VEGF, TGF-β1, Notch1, Jagged1 and mRNA expressions of Notch1, Jagged1 in different degrees ( P<0.05). Compared with the triamcinolone acetonide group, the collagen fiber surface density, protein expressions of VEGF, TGF-β1, Notch1 and Jagged1 and mRNA expressions of Notch1, Jagged1 in the alum ice nanoemulsion medium-dosage group decreased ( P<0.05).

Conclusion:

Alum ice nanoemulsion can inhibit hypertrophic scar formation, and its mechanism is related to down-regulating Notch signal pathway related molecules Notch1, Jagged1 protein and mRNA levels, and then down-regulating VEGF and TGF-β1 protein expressions.

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Idioma: Chinês Revista: International Journal of Traditional Chinese Medicine Ano de publicação: 2023 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Idioma: Chinês Revista: International Journal of Traditional Chinese Medicine Ano de publicação: 2023 Tipo de documento: Artigo