Your browser doesn't support javascript.
loading
MicroRNA21-5p alleviates hyperoxia-induced acute lung injury in rats through activating phosphatidylinositol 3 kinase/serine-threonine protein kinase signaling pathway by regulating type Ⅱ alveolar epithelial cell apoptosis / 中华危重病急救医学
Chinese Critical Care Medicine ; (12): 140-145, 2023.
Artigo em Chinês | WPRIM | ID: wpr-991992
ABSTRACT

Objective:

To investigate whether microRNA-21-5p (miR-21-5p) alleviates hyperoxia-induced acute lung injury (HALI) through activating the phosphatidylinositol 3 kinase/serine-threonine protein kinase (PI3K/Akt) signaling pathway by regulating apoptosis of type Ⅱ alveolar epithelial cell (AECⅡ).

Methods:

Seventy-two male Sprague-Dawley (SD) rats were divided into normozone-controlled group, HALI group, PI3K/Akt signaling pathway inhibitor LY294002+HALI group (LY+HALI group), miR-21-5p overexpression+LY294002+HALI group (miR-21-5p+LY+HALI group), miR-21-5p overexpression+HALI group (miR-21-5p+HALI group), and dimethyl sulfoxide (DMSO)+HALI group by random number table method with 12 rats in each group. Animal models of HALI were prepared using 95% concentrations of oxygen. The animals in the normozone-controlled group were fed normally under normoxia. Transfection of lung tissue by miR-21-5p adeno-associated viral vector AAV6-miR-21-5p was performed by instillation of 200 μL titer (1×10 12 TU/mL) through a tracheal catheter 3 weeks prior to modeling. DMSO and LY294002 were administered via the tail vein at 0.3 mg/kg 1 hour before modeling. After 48 hours of modeling, carotid artery blood was collected to detect oxygenation index (OI) and respiratory index (RI), and real-time fluorescence quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to detect miR-21-5p expression. Lung tissue was collected, and the levels of inflammatory factors including tumor necrosis factor-α (TNF-α) and interleukins (IL-6, IL-1β) were measured by enzyme-linked immunosorbent assay (ELISA), and the ratio of pulmonary wet/dry weight (W/D) was determined, and the pathological changes of lung histopathology were observed under the light microscopy after hematoxylin-eosin (HE) staining. Each group was purified AECⅡ cells from 6 rats, the apoptosis rate was detected by flow cytometry, and the expression levels of phosphatase and tensin homologous gene (PTEN), and proteins from the PI3K/Akt signaling pathway were detected by Western blotting.

Results:

Compared with the normozone-controlled group, alveolar septal thickening and massive inflammatory cell infiltration were found after hyperoxia exposure, RI, inflammatory factors, lung W/D ratio, pathological score, AECⅡ cells early apoptosis rate, PTEN protein expression and phosphorylation level of Akt were increased, while OI and miR-21-5p expression were decreased, indicating the successful preparation of the model. After pretreatment, LY294002 could aggravate the pathological injury of lung tissue in HALI rats, RI, inflammatory factors and lung W/D ratio were further increased, and OI was further reduced compared with HALI group. At the same time, it could promote the AECⅡ cell apoptosis, further up-regulate the expression of PTEN, and reduce the phosphorylation of Akt. However, miR-21-5p pretreatment could negatively regulate PTEN, activate PI3K/Akt signal pathway, inhibit AECⅡ cell apoptosis, and reduce HALI, which was shown by the decreased level of inflammatory factors in miR-21-5p+LY+HALI group compared with LY+HALI group [TNF-α (μg/L) 100.33±3.48 vs. 116.55±2.53, IL-6 (ng/L) 141.06±3.70 vs. 161.31±3.59, IL-1β (μg/L) 90.82±3.69 vs. 112.23±2.87, all P < 0.05], RI, lung injury pathology score, lung W/D ratio, and AECⅡ cell early apoptosis rate were significantly decreased [RI 0.81±0.02 vs. 1.05±0.07, pathology score 0.304±0.008 vs. 0.359±0.007, lung W/D ratio 5.29±0.03 vs. 5.52±0.08, apoptosis rate (27.20±2.34)% vs. (34.17±1.49)%, all P < 0.05], OI and expressions of miR-21-5p were significantly increased [OI (mmHg, 1 mmHg≈0.133 kPa) 266.71±2.75 vs. 230.12±4.04, miR-21-5p (2 -&Delta;&Delta;Ct) 2.21±0.13 vs. 0.33±0.03, both P < 0.05], and PTEN protein expression in AECⅡ cell was significantly reduced (PTEN/GAPDH 0.50±0.06 vs. 0.93±0.06, P < 0.05), and phosphorylation level of Akt was significantly increased [phosphorylated Akt (p-Akt) protein (p-Akt/GAPDH) 0.86±0.05 vs. 0.56±0.06, P < 0.05].

Conclusion:

miR-21-5p attenuates HALI by inhibiting AECⅡ cell apoptosis, possibly through negative regulation of PTEN to activate PI3K/Akt signaling pathway.

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Idioma: Chinês Revista: Chinese Critical Care Medicine Ano de publicação: 2023 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Idioma: Chinês Revista: Chinese Critical Care Medicine Ano de publicação: 2023 Tipo de documento: Artigo