Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Soft comput ; : 1-16, 2021 May 19.
Article in English | MEDLINE | ID: covidwho-2242448

ABSTRACT

Unemployment remains a serious issue for both developed and developing countries and a driving force to lose their monetary and financial impact. The estimation of the unemployment rate has drawn researchers' attention in recent years. This investigation's key objective is to inquire about the impact of COVID-19 on the unemployment rate in selected, developed and developing countries of Asia. For experts and policymakers, effective prediction of the unemployment rate is an influential test that assumes an important role in planning the monetary and financial development of a country. Numerous researchers have recently utilized conventional analysis tools for unemployment rate prediction. Notably, unemployment data sets are nonstationary. Therefore, modeling these time series by conventional methods can produce an arbitrary mistake. To overcome the accuracy problem associated with conventional approaches, this investigation assumes intelligent-based prediction approaches to deal with the unemployment data and to predict the unemployment rate for the upcoming years more precisely. These intelligent-based unemployment rate strategies will force their implications by repeating diversity in the unemployment rate. For illustration purposes, unemployment data sets of five advanced and five developing countries of Asia, essentially Japan, South Korea, Malaysia, Singapore, Hong Kong, and five agricultural countries (i.e., Pakistan, China, India, Bangladesh and Indonesia) are selected. The hybrid ARIMA-ARNN model performed well among all hybrid models for advanced countries of Asia, while the hybrid ARIMA-ANN outperformed for developing countries aside from China, and hybrid ARIMA-SVM performed well for China. Furthermore, for future unemployment rate prediction, these selected models are utilized. The result displays that in developing countries of Asia, the unemployment rate will be three times higher as compared to advanced countries in the coming years, and it will take double the time to address the impacts of Coronavirus in developing countries than in developed countries of Asia.

2.
International Journal of Finance & Economics ; 28(1):528-543, 2023.
Article in English | ProQuest Central | ID: covidwho-2227124

ABSTRACT

Unemployment remains a major cause for both developed and developing nations, due to which they lose their financial and economic impact as a whole. Unemployment rate prediction achieved researcher attention from a fast few years. The intention of doing our research is to examine the impact of the coronavirus on the unemployment rate. Accurately predicting the unemployment rate is a stimulating job for policymakers, which plays an imperative role in a country's financial and financial development planning. Classical time series models such as ARIMA models and advanced non‐linear time series methods be previously hired for unemployment rate prediction. It is known to us that mostly these data sets are non‐linear as well as non‐stationary. Consequently, a random error can be produced by a distinct time series prediction model. Our research considers hybrid prediction approaches supported by linear and non‐linear models to preserve forecast the unemployment rates much precisely. These hybrid approaches of the unemployment rate can advance their estimates by reproducing the unemployment ratio irregularity. These models' appliance is exposed to six unemployment rate statistics sets from Europe's selected countries, specifically France, Spain, Belgium, Turkey, Italy and Germany. Among these hybrid models, the hybrid ARIMA‐ARNN forecasting model performed well for France, Belgium, Turkey and Germany, whereas hybrid ARIMA‐SVM performed outclass for Spain and Italy. Furthermore, these models are used for the best future prediction. Results show that the unemployment rate will be higher in the coming years, which is the consequence of the coronavirus, and it will take at least 5 years to overcome the impact of COVID‐19 in these countries.

SELECTION OF CITATIONS
SEARCH DETAIL