Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biomed Chromatogr ; 36(6): e5365, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1739127

ABSTRACT

Favipiravir is a potential antiviral medication that has been recently licensed for Covid-19 treatment. In this work, a gadolinium-based magnetic ionic liquid was prepared and used as an extractant in dispersive liquid-liquid microextraction (DLLME) of favipiravir in human plasma. The high enriching ability of DLLME allowed the determination of favipiravir in real samples using HPLC/UV with sufficient sensitivity. The effects of several variables on extraction efficiency were investigated, including type of extractant, amount of extractant, type of disperser and disperser volume. The maximum enrichment was attained using 50 mg of the Gd-magnetic ionic liquid (MIL) and 150 µl of tetrahydrofuran. The Gd-based MIL could form a supramolecular assembly in the presence of tetrahydrofuran, which enhanced the extraction efficiency of favipiravir. The developed method was validated according to US Food and Drug Administration bioanalytical method validation guidelines. The coefficient of determination was 0.9999, for a linear concentration range of 25 to 1.0 × 105  ng/ml. The percentage recovery (accuracy) varied from 99.83 to 104.2%, with RSD values (precision) ranging from 4.07 to 11.84%. The total extraction time was about 12 min and the HPLC analysis time was 5 min. The method was simple, selective and sensitive for the determination of favipiravir in real human plasma.


Subject(s)
COVID-19 , Ionic Liquids , Liquid Phase Microextraction , Amides , COVID-19/drug therapy , Chromatography, High Pressure Liquid/methods , Furans , Gadolinium , Humans , Liquid Phase Microextraction/methods , Magnetic Phenomena , Pyrazines
2.
Saudi J Biol Sci ; 29(1): 18-29, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1487971

ABSTRACT

BACKGROUND: The ongoing global outbreak of new corona virus (SARS-CoV-2) has been recognized as global public health concern since it causes high morbidity and mortality every day. Due to the rapid spreading and re-emerging, we need to find a potent drug against SARS-CoV-2. Synthetic drugs, such as hydroxychloroquine, remdisivir have paid more attention and the effects of these drugs are still under investigation, due to their severe side effects. Therefore, the aim of the present study was performed to identify the potential inhibitor against main protease SARS-CoV-2 6LU7. OBJECTIVE: In this study, RO5, ADME properties, molecular dynamic simulations and free binding energy prediction were mainly investigated. RESULTS: The molecular docking study findings revealed that andrographolide had higher binding affinity among the selected natural diterpenoids compared to co-crystal native ligand inhibitor N3. The persistent inhibition of Ki for diterpenoids was analogous. Furthermore, the simulations of molecular dynamics and free binding energy findings have shown that andrographolide possesses a large amount of dynamic properties such as stability, flexibility and binding energy. CONCLUSION: In conclusion, findings of the current study suggest that selected diterpenoids were predicted to be the significant phytonutrient-based inhibitor against SARS-CoV-2 6LU7 (Mpro). However, preclinical and clinical trials are needed for the further scientific validation before use.

SELECTION OF CITATIONS
SEARCH DETAIL