ABSTRACT
INTRODUCTION: Many developing countries have drastically imbalanced health systems in different regions. The COVID-19 outbreak posed a further challenge as hospital structures, equipped with doctors, critical care units and respirators, were not available to a sufficient extent in all regions. OBJECTIVE: This study is a descriptive study on the efficiency of Malaysian states in facing the COVID-19 outbreak. METHODOLOGY: The efficiency of all Malaysian states was measured using Data Envelopment Analysis in which each state's Score of COVID Index (SCI) was quantified. The SCI of these states were then further compared between the year 2020 and 2021. A greater disparity would indicate a decline in the performance of a state over time, where nearly all the states in Malaysia experienced an increase in the score of COVID Index (SCI). RESULT: This study found that the central region was the most affected, since all the three states in the region (Selangor, Federal Territory of Kuala Lumpur, and Federal Territory of Putrajaya) showed a situation of inadequacy (SCI: >0.75) due to the COVID-19 outbreak. CONCLUSION: The ranking of Malaysia's states according to their vulnerability to an outbreak of COVID-19 is vitally significant for the purposes of assisting the government and policymakers in planning their responses to the outbreak and ensuring that resources are distributed appropriately.
Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Disease Outbreaks/prevention & control , Malaysia/epidemiologyABSTRACT
This study intends to deal with the environmental consequences of the COVID-19 pandemic in Malaysia, by providing a summary of the effects of COVID-19 on municipal solid waste (MSW). In this analysis, the data on domestic waste collection were collected from the Solid Waste Management and Public Cleaning Corporation (SWCorp) from 1 January 2020 to 31 December 2020 to evaluate the relative changes in MSW percentage via a waste weighing method. The data consisted of the cumulative tonnage of MSW for every local authority in Peninsular Malaysia and was classified according to MCO phases; before the MCO, during the MCO, during the conditional MCO (CMCO) and during the recovery MCO (RMCO) phases. The results indicated that the enforcement of the early MCO showed a positive effect by decreasing the volume of MSW. This decrease was noted across 41 local authorities, which accounts for 87.23% of Peninsular Malaysia. However, the amount of MSW began to increase again when the MCO reached the conditional and recovery stages. From this, it can be concluded that the implementation of the MCO, in its various incarnations, has shown us that our lifestyles can have a harmful impact on our environment. While the pandemic was still spreading and limitations were still in place in Malaysia, local governments and waste management companies had to quickly alter their waste management systems and procedures. The current circumstance allows us to rethink our social and economic structures while improving environmental and social inclusion.
Subject(s)
COVID-19 , Refuse Disposal , Waste Management , Humans , Malaysia , Pandemics , SARS-CoV-2 , Solid Waste/analysisABSTRACT
An outbreak of respiratory illness which is proven to be infected by a 2019 novel coronavirus (2019-nCoV) officially named as Coronavirus Disease 2019 (COVID-19) was first detected in Wuhan, China and has spread rapidly in other parts of China as well as other countries around the world, including Malaysia. The first case in Malaysia was identified on 25 January 2020 and the number of cases continue to rise since March 2020. Therefore, 2020 Malaysia Movement Control Order (MCO) was implemented with the aim to isolate the source of the COVID-19 outbreak. As a result, there were fewer number of motor vehicles on the road and the operation of industries was suspended, ergo reducing emissions of hazardous air pollutants in the atmosphere. We had acquired the Air Pollutant Index (API) data from the Department of Environment Malaysia on hourly basis before and during the MCO with the aim to track the changes of fine particulate matter (PM2.5) at 68 air quality monitoring stations. It was found that the PM2.5 concentrations showed a high reduction of up to 58.4% during the MCO. Several red zone areas (>41 confirmed COVID-19 cases) had also reduced of up to 28.3% in the PM2.5 concentrations variation. The reduction did not solely depend on MCO, thus the researchers suggest a further study considering the influencing factors that need to be adhered to in the future.
Subject(s)
Air Pollution , Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , COVID-19 , China , Humans , Malaysia , SARS-CoV-2ABSTRACT
This study has highlighted the trend of recently-reported dengue cases after the implementation of the Movement Control Orders (MCOs) caused due to COVID-19 pandemic in Malaysia. The researchers used the dengue surveillance data published by the Malaysian Ministry of Health during the 3 phases of MCO (which ranged between 17th March 2020 and 28th April 2020) was used for determining the cumulative number of dengue patients. Thereafter, the dengue cases were mapped using the Geographical Information System (GIS). The results indicated that during the 42 days of MCO in Peninsular Malaysia, 11,242 total cases of dengue were reported. The daily trend of the dengue cases showed a decrease from 7268 cases that occurred before the MCOs to 4662 dengue cases that occurred during the initial 14 days of the COVID-19 pandemic (i.e., MCO I), to 3075 cases occurring during the MCO II and 3505 dengue cases noted during MCO III. The central peninsular region showed a maximal decrease in new dengue cases (52.62%), followed by the northern peninsular region (1.89%); eastern coastal region (1.25%) and the southern peninsular region (1.14%) during the initial MCO implementation. However, an increase in the new dengue cases was noted during the MCO III period, wherein all states showed an increase in the new dengue cases as compared during MCO II. The decrease in the pattern was not solely based on the MCO, hence, further investigation is necessary after considering different influencing factors. These results have important implication for future large-scale risk assessment, planning and hazard mitigation on dengue management.