Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Res Int Bus Finance ; 64: 101882, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2182861

ABSTRACT

This paper aims to investigate the regime-switching and time-varying dependence between the COVID-19 pandemic and the US stock markets using a Markov-switching framework. It makes two contributions to the empirical literature by showing that: (a) the variations of the daily reported COVID-19 cases and cumulative COVID-19 deaths induced asymmetric lower (left) and upper (right) tail dependence with the stock markets, and its left and right tail dependence exhibited significant time-varying trends; and (b) the left and right tail dependence between the stock markets and the pandemic exhibited significant regime-switching behaviours, with its switching probabilities in the higher tail dependence stage all being greater than in the lower tail dependence stage after 1 December 2019. Moreover, given that there is concurrent but significant financial market reaction to any unexpected emergence of a transmittable respirational disease or a natural calamity, the outcomes have some vital implications to market players and policymakers.

2.
Research in International Business and Finance ; 64:101863, 2023.
Article in English | ScienceDirect | ID: covidwho-2165812
3.
Res Int Bus Finance ; 64: 101850, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2165810

ABSTRACT

This study aims to examine whether the prices and returns of two cryptocurrencies, Dogecoin and Ethereum, are affected by Twitter engagement following the COVID-19 pandemic. We use the autoregressive integrated moving average with explanatory variables model to integrate the effects of investor attention and engagement on Dogecoin and Ethereum returns using data from December 31, 2020, to May 12, 2021. The results provide evidence supporting the hypothesis of a strong effect of Twitter investor engagement on Dogecoin returns; however, no potential impact is identified for Ethereum. These findings add to the growing evidence regarding the effect of social media on the cryptocurrency market and have useful implications for investors and corporate investment managers concerning investment decisions and trading strategies.

4.
Ann Oper Res ; : 1-28, 2022 Jan 06.
Article in English | MEDLINE | ID: covidwho-1616176

ABSTRACT

This paper uses weekly data from July 01, 2011 to July 09, 2021 to examine the dynamic nonlinear connectedness between the green bonds, clean energy, and stock price around the COVID-19 outbreak in the global markets. By building a time-varying parameter vector autoregression model (TVP-VAR), the comparison analyses of pre- and during the COVID-19 sample groups verify the existence of nonlinear and dynamic correlation among the three variables. First, prior to the COVID-19 pandemic, the simultaneous impacts of clean energy on stock price increased over time. Second, the results of impulse responses at different horizons indicate that green bonds lead to a short-term increase of clean energy, and it exerts an increasingly positive impacts after the COVID-19 outbreak. The COVID-19 has weakened the negative impacts of green bonds on stock price in the medium term. Finally, through the analysis of impulse responses at different points, we find that stock prices will rise when clean energy is subjected to a positive shock, and this positive effect is stronger during economic recovery period than in the other two periods.

6.
Ann Oper Res ; : 1-52, 2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1536318

ABSTRACT

This study proposes an ensemble deep learning approach that integrates Bagging Ridge (BR) regression with Bi-directional Long Short-Term Memory (Bi-LSTM) neural networks used as base regressors to become a Bi-LSTM BR approach. Bi-LSTM BR was used to predict the exchange rates of 21 currencies against the USD during the pre-COVID-19 and COVID-19 periods. To demonstrate the effectiveness of our proposed model, we compared the prediction performance with several more traditional machine learning algorithms, such as the regression tree, support vector regression, and random forest regression, and deep learning-based algorithms such as LSTM and Bi-LSTM. Our proposed ensemble deep learning approach outperformed the compared models in forecasting exchange rates in terms of prediction error. However, the performance of the model significantly varied during non-COVID-19 and COVID-19 periods across currencies, indicating the essential role of prediction models in periods of highly volatile foreign currency markets. By providing an improved prediction performance and identifying the most seriously affected currencies, this study is beneficial for foreign exchange traders and other stakeholders in that it offers opportunities for potential trading profitability and for reducing the impact of increased currency risk during the pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL