Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Exp Med ; 219(7)2022 Jul 04.
Article in English | MEDLINE | ID: covidwho-1878728

ABSTRACT

Autosomal recessive IRF7 deficiency was previously reported in three patients with single critical influenza or COVID-19 pneumonia episodes. The patients' fibroblasts and plasmacytoid dendritic cells produced no detectable type I and III IFNs, except IFN-ß. Having discovered four new patients, we describe the genetic, immunological, and clinical features of seven IRF7-deficient patients from six families and five ancestries. Five were homozygous and two were compound heterozygous for IRF7 variants. Patients typically had one episode of pulmonary viral disease. Age at onset was surprisingly broad, from 6 mo to 50 yr (mean age 29 yr). The respiratory viruses implicated included SARS-CoV-2, influenza virus, respiratory syncytial virus, and adenovirus. Serological analyses indicated previous infections with many common viruses. Cellular analyses revealed strong antiviral immunity and expanded populations of influenza- and SARS-CoV-2-specific memory CD4+ and CD8+ T cells. IRF7-deficient individuals are prone to viral infections of the respiratory tract but are otherwise healthy, potentially due to residual IFN-ß and compensatory adaptive immunity.


Subject(s)
COVID-19 , Influenza, Human , Virus Diseases , Viruses , Adult , COVID-19/genetics , Humans , Influenza, Human/genetics , SARS-CoV-2
3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-334201

ABSTRACT

ABSTRACT Pre-mRNA splicing is initiated with the recognition of a single-nucleotide intronic branchpoint (BP) within a BP motif by spliceosome elements. Fifty-six rare variants in 44 human genes have been reported to alter splicing and cause disease by disrupting BP. However, until now, no computational approach has been available to efficiently detect such variants in next-generation sequencing (NGS) data. We established a comprehensive human genome-wide BP database by integrating existing BP data, and by generating new BP data from RNA-seq of lariat debranching enzyme DBR1-mutated patients and from machine-learning predictions. We in-depth characterize multiple features of BP in major and minor introns, and find that BP and BP-2 (two-nucleotides upstream of BP) positions exhibit a lower rate of variation in human populations and higher evolutionary conservation than the intronic background, whilst being comparable to the exonic background. We develop BPHunter as a genome-wide computational approach to systematically and efficiently detect intronic variants that may disrupt BP recognition in NGS data. BPHunter retrospectively identifies 48 of the 56 known pathogenic BP mutations in which we summarize a strategy for prioritizing BP mutation candidates, and the remaining 8 all create AG dinucleotides between BP and acceptor site which is probably the reason for mis-splicing. We demonstrate the utility of BPHunter prospectively by using it to identify a novel germline heterozygous BP variant of STAT2 in a patient with critical COVID-19 pneumonia, and a novel somatic intronic 59-nucleotide deletion of ITPKB in a lymphoma patient, both of which we validate experimentally. BPHunter is publicly available from https://hgidsoft.rockefeller.edu/BPHunter and https://github.com/casanova-lab/BPHunter .

4.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-310899

ABSTRACT

Background: In a recent study, autoantibodies neutralizing type I interferons (IFNs) were present in at least 10% of cases of critical COVID-19 pneumonia. These autoantibodies neutralized most type I IFNs but rarely IFN-beta. Objectives: We aimed to define the prevalence of autoantibodies neutralizing type I IFN in a cohort of patients with severe COVID-19 pneumonia treated with IFN-beta-1b during hospitalization and to analyze their impact on various clinical variables and outcomes. Methods: We analyzed stored serum/plasma samples and clinical data of COVID-19 patients treated subcutaneously with IFN-beta-1b from March to May 2020, at the Infanta Leonor University Hospital in Madrid, Spain. Results: The cohort comprised 47 COVID-19 patients with severe pneumonia, 16 of whom (34%) had a critical progression requiring ICU admission. The median age was 71 years, with 28 men (58.6%). Type I IFN-alpha- and omega-neutralizing autoantibodies were found in 5 of 47 patients with severe pneumonia or critical disease (10.6%). The autoantibodies did not neutralize IFN-beta. No demographic, comorbidity, or clinical differences were seen between individuals with or without autoantibodies. We found a significant correlation between the presence of neutralizing autoantibodies and higher C-reactive protein levels (p=5.10e -03 ) and lower lymphocyte counts (p=1.80e -02 ). Survival analysis suggested that neutralizing autoantibodies may increase the risk of death (4/5, 80% vs 12/42, 28.5%). Conclusion: Autoantibodies neutralizing type I IFN underlie severe/critical COVID-19 stages in at least 10% of cases, correlate with increased C-RP and lower lymphocyte counts, and confer a trend towards increased risk of death. Subcutaneous IFN-beta treatment of hospitalized patients did not seem to improve clinical outcome. Studies of earlier, ambulatory IFN-beta treatment are warranted.

5.
Curr Res Transl Med ; 70(2): 103333, 2022 05.
Article in English | MEDLINE | ID: covidwho-1683570

ABSTRACT

BACKGROUND: The human protein transmembrane protease serine type 2 (TMPRSS2) plays a key role in SARS-CoV-2 infection, as it is required to activate the virus' spike protein, facilitating entry into target cells. We hypothesized that naturally-occurring TMPRSS2 human genetic variants affecting the structure and function of the TMPRSS2 protein may modulate the severity of SARS-CoV-2 infection. METHODS: We focused on the only common TMPRSS2 non-synonymous variant predicted to be damaging (rs12329760 C>T, p.V160M), which has a minor allele frequency ranging from 0.14 in Ashkenazi Jewish to 0.38 in East Asians. We analysed the association between the rs12329760 and COVID-19 severity in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units recruited as part of the GenOMICC (Genetics Of Mortality In Critical Care) study. Logistic regression analyses were adjusted for sex, age and deprivation index. For in vitro studies, HEK293 cells were co-transfected with ACE2 and either TMPRSS2 wild type or mutant (TMPRSS2V160M). A SARS-CoV-2 pseudovirus entry assay was used to investigate the ability of TMPRSS2V160M to promote viral entry. RESULTS: We show that the T allele of rs12329760 is associated with a reduced likelihood of developing severe COVID-19 (OR 0.87, 95%CI:0.79-0.97, p = 0.01). This association was stronger in homozygous individuals when compared to the general population (OR 0.65, 95%CI:0.50-0.84, p = 1.3 × 10-3). We demonstrate in vitro that this variant, which causes the amino acid substitution valine to methionine, affects the catalytic activity of TMPRSS2 and is less able to support SARS-CoV-2 spike-mediated entry into cells. CONCLUSION: TMPRSS2 rs12329760 is a common variant associated with a significantly decreased risk of severe COVID-19. Further studies are needed to assess the expression of TMPRSS2 across different age groups. Moreover, our results identify TMPRSS2 as a promising drug target, with a potential role for camostat mesilate, a drug approved for the treatment of chronic pancreatitis and postoperative reflux esophagitis, in the treatment of COVID-19. Clinical trials are needed to confirm this.


Subject(s)
COVID-19 , COVID-19/genetics , Gene Frequency , HEK293 Cells , Humans , SARS-CoV-2 , Serine Endopeptidases/genetics , Virus Internalization
6.
Current research in translational medicine ; 2022.
Article in English | EuropePMC | ID: covidwho-1615101

ABSTRACT

Background : The human protein transmembrane protease serine type 2 (TMPRSS2) plays a key role in SARS-CoV-2 infection, as it is required to activate the virus’ spike protein, facilitating entry into target cells. We hypothesized that naturally-occurring TMPRSS2 human genetic variants affecting the structure and function of the TMPRSS2 protein may modulate the severity of SARS-CoV-2 infection. Methods : We focused on the only common TMPRSS2 non-synonymous variant predicted to be damaging (rs12329760 C>T, p.V160M), which has a minor allele frequency ranging from from 0.14 in Ashkenazi Jewish to 0.38 in East Asians. We analysed the association between the rs12329760 and COVID-19 severity in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units recruited as part of the GenOMICC (Genetics Of Mortality In Critical Care) study. Logistic regression analyses were adjusted for sex, age and deprivation index. For in vitro studies, HEK293 cells were co-transfected with ACE2 and either TMPRSS2 wild type or mutant (TMPRSS2V160M). A SARS-CoV-2 pseudovirus entry assay was used to investigate the ability of TMPRSS2V160M to promote viral entry. Results : We show that the T allele of rs12329760 is associated with a reduced likelihood of developing severe COVID-19 (OR 0.87, 95%CI:0.79-0.97, p=0.01). This association was stronger in homozygous individuals when compared to the general population (OR 0.65, 95%CI:0.50-0.84, p=1.3 × 10−3). We demonstrate in vitro that this variant, which causes the amino acid substitution valine to methionine, affects the catalytic activity of TMPRSS2 and is less able to support SARS-CoV-2 spike-mediated entry into cells. Conclusion : TMPRSS2 rs12329760 is a common variant associated with a significantly decreased risk of severe COVID-19. Further studies are needed to assess the expression of TMPRSS2 across different age groups. Moreover, our results identify TMPRSS2 as a promising drug target, with a potential role for camostat mesilate, a drug approved for the treatment of chronic pancreatitis and postoperative reflux esophagitis, in the treatment of COVID-19. Clinical trials are needed to confirm this.

8.
Nat Immunol ; 23(2): 159-164, 2022 02.
Article in English | MEDLINE | ID: covidwho-1475313

ABSTRACT

SARS-CoV-2 infections display tremendous interindividual variability, ranging from asymptomatic infections to life-threatening disease. Inborn errors of, and autoantibodies directed against, type I interferons (IFNs) account for about 20% of critical COVID-19 cases among SARS-CoV-2-infected individuals. By contrast, the genetic and immunological determinants of resistance to infection per se remain unknown. Following the discovery that autosomal recessive deficiency in the DARC chemokine receptor confers resistance to Plasmodium vivax, autosomal recessive deficiencies of chemokine receptor 5 (CCR5) and the enzyme FUT2 were shown to underlie resistance to HIV-1 and noroviruses, respectively. Along the same lines, we propose a strategy for identifying, recruiting, and genetically analyzing individuals who are naturally resistant to SARS-CoV-2 infection.


Subject(s)
COVID-19/genetics , Disease Resistance/genetics , Genetic Predisposition to Disease , SARS-CoV-2/pathogenicity , Animals , COVID-19/immunology , COVID-19/virology , Genetic Heterogeneity , Host-Pathogen Interactions , Humans , Phenotype , Protective Factors , Risk Assessment , Risk Factors , SARS-CoV-2/immunology
10.
Journal of Clinical Investigation ; 131(15):1-1,1A, 2021.
Article in English | ProQuest Central | ID: covidwho-1338047

ABSTRACT

[...]the power computation shown in their Figure 1 is based on an incorrect hypothesis about the odds ratio, which would be expected to be lower when using general population controls (as they did) than when using paucisymptomatic and asymptomatic infected individuals (as we did). (iv) The ethnic origin of the patients differs between the 2 studies: 58% of our 659 patients (and 8 of our 9 pLOF carriers) were European, versus only 10% of their 713 patients with severe disease (and the pLOF carrier was East Asian). (v) Age is a key factor neglected in their comparison: our sample was much younger (mean age, 51.8 years) than theirs (mean, 65.9 years), and 7 of our 9 pLOF carriers were younger than 60 years. Because the rates of pLOFs vary considerably across populations, adjustment for only 3 principal components of ancestry in rare-variant association tests of multiethnic cohorts does not provide adequate control for population structure. [...]none of the associations showed even marginal significance. [...]consistent with our study, these findings do not support substantial contributions of inborn errors in type I IFN immunity to COVID-19 severity.

11.
Sci Immunol ; 6(59)2021 05 25.
Article in English | MEDLINE | ID: covidwho-1337429

ABSTRACT

Multiple Inflammatory Syndrome in Children (MIS-C) is a delayed and severe complication of SARS-CoV-2 infection that strikes previously healthy children. As MIS-C combines clinical features of Kawasaki disease and Toxic Shock Syndrome (TSS), we aimed to compare the immunological profile of pediatric patients with these different conditions. We analyzed blood cytokine expression, and the T cell repertoire and phenotype in 36 MIS-C cases, which were compared to 16 KD, 58 TSS, and 42 COVID-19 cases. We observed an increase of serum inflammatory cytokines (IL-6, IL-10, IL-18, TNF-α, IFNγ, CD25s, MCP1, IL-1RA) in MIS-C, TSS and KD, contrasting with low expression of HLA-DR in monocytes. We detected a specific expansion of activated T cells expressing the Vß21.3 T cell receptor ß chain variable region in both CD4 and CD8 subsets in 75% of MIS-C patients and not in any patient with TSS, KD, or acute COVID-19; this correlated with the cytokine storm detected. The T cell repertoire returned to baseline within weeks after MIS-C resolution. Vß21.3+ T cells from MIS-C patients expressed high levels of HLA-DR, CD38 and CX3CR1 but had weak responses to SARS-CoV-2 peptides in vitro. Consistently, the T cell expansion was not associated with specific classical HLA alleles. Thus, our data suggested that MIS-C is characterized by a polyclonal Vß21.3 T cell expansion not directed against SARS-CoV-2 antigenic peptides, which is not seen in KD, TSS and acute COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/pathology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/pathology , Adult , Child , Child, Preschool , Cytokines/blood , HLA-DR Antigens/immunology , Humans , Lymphocyte Activation/immunology , SARS-CoV-2/immunology
12.
C R Biol ; 344(1): 19-25, 2021 Jun 21.
Article in English | MEDLINE | ID: covidwho-1302732

ABSTRACT

We established the COVID Human Genetic Effort (www.covidhge.com) to discover the human genetic and immunological bases of the vast interindividual clinical variability between humans infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We found that about 3% of patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia were ill because of inborn errors of genes controlling type I interferon (IFN)-dependent immunity (which controls influenza virus), and at least 10% of patients with life-threatening COVID-19 pneumonia had neutralizing auto-Abs against some of the 17 individual type I IFNs. These findings indicate that impaired type I IFN immunity underlies life-threatening COVID-19 pneumonia in at least 13% of patients. These discoveries pave the way for further research into unexplained severe cases, and provide a rationale for preventing and treating the disease in individuals at risk, with recombinant type I IFNs.


Nous avons créé le COVID Human Genetic Effort (www.covidhge.com) afin de découvrir les bases génétiques et immunologiques expliquant l'immense variabilité clinique interindividuelle entre les humains infectés par le nouveau coronavirus 2 du syndrome respiratoire aigu sévère (SRAS-CoV-2). Nous avons découvert qu'environ 3% des patients atteints de pneumonie sévère à coronavirus 2019 (COVID-19) menaçant leur pronostic vital étaient malades en raison de défauts génétiques dans les gènes contrôlant l'immunité dépendant de la voie de l'interféron (IFN) de type I (qui contrôle le virus de la grippe), et qu'au moins 10% de ces patients avaient des auto-anticorps neutralisants contre certains des 17 IFN de type I. Ces résultats indiquent qu'un défaut de l'immunité dépendante des IFN de type I est à l'origine de la sévérité de la pneumopathie à COVID-19 chez au moins 13% des patients. Ces découvertes ouvrent la voie à d'autres recherches sur des cas graves inexpliqués de COVID-19 et sont un argument en faveur de l'utilisation d'IFNs de type I recombinants pour la prévention et le traitement de la maladie chez les personnes à risque.


Subject(s)
COVID-19 , Interferon Type I , Pneumonia , Humans , SARS-CoV-2
13.
J Clin Immunol ; 41(5): 914-922, 2021 07.
Article in English | MEDLINE | ID: covidwho-1293410

ABSTRACT

BACKGROUND: In a recent study, autoantibodies neutralizing type I interferons (IFNs) were present in at least 10% of cases of critical COVID-19 pneumonia. These autoantibodies neutralized most type I IFNs but rarely IFN-beta. OBJECTIVES: We aimed to define the prevalence of autoantibodies neutralizing type I IFN in a cohort of patients with severe COVID-19 pneumonia treated with IFN-beta-1b during hospitalization and to analyze their impact on various clinical variables and outcomes. METHODS: We analyzed stored serum/plasma samples and clinical data of COVID-19 patients treated subcutaneously with IFN-beta-1b from March to May 2020, at the Infanta Leonor University Hospital in Madrid, Spain. RESULTS: The cohort comprised 47 COVID-19 patients with severe pneumonia, 16 of whom (34%) had a critical progression requiring ICU admission. The median age was 71 years, with 28 men (58.6%). Type I IFN-alpha- and omega-neutralizing autoantibodies were found in 5 of 47 patients with severe pneumonia or critical disease (10.6%), while they were not found in any of the 118 asymptomatic controls (p = 0.0016). The autoantibodies did not neutralize IFN-beta. No demographic, comorbidity, or clinical differences were seen between individuals with or without autoantibodies. We found a significant correlation between the presence of neutralizing autoantibodies and higher C-reactive protein levels (p = 5.10e-03) and lower lymphocyte counts (p = 1.80e-02). No significant association with response to IFN-beta-1b therapy (p = 0.34) was found. Survival analysis suggested that neutralizing autoantibodies may increase the risk of death (4/5, 80% vs 12/42, 28.5%). CONCLUSION: Autoantibodies neutralizing type I IFN underlie severe/critical COVID-19 stages in at least 10% of cases, correlate with increased C-RP and lower lymphocyte counts, and confer a trend towards increased risk of death. Subcutaneous IFN-beta treatment of hospitalized patients did not seem to improve clinical outcome. Studies of earlier, ambulatory IFN-beta treatment are warranted.


Subject(s)
Antibodies, Neutralizing/blood , Autoantibodies/blood , COVID-19/immunology , Interferon Type I/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , C-Reactive Protein/analysis , Female , Hospitalization , Humans , Male , Middle Aged
15.
J Exp Med ; 218(6)2021 06 07.
Article in English | MEDLINE | ID: covidwho-1203555

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) emerged in April 2020 in communities with high COVID-19 rates. This new condition is heterogenous but resembles Kawasaki disease (KD), a well-known but poorly understood and clinically heterogenous pediatric inflammatory condition for which weak associations have been found with a myriad of viral illnesses. Epidemiological data clearly indicate that SARS-CoV-2 is the trigger for MIS-C, which typically occurs about 1 mo after infection. These findings support the hypothesis of viral triggers for the various forms of classic KD. We further suggest that rare inborn errors of immunity (IEIs) altering the immune response to SARS-CoV-2 may underlie the pathogenesis of MIS-C in some children. The discovery of monogenic IEIs underlying MIS-C would shed light on its pathogenesis, paving the way for a new genetic approach to classic KD, revisited as a heterogeneous collection of IEIs to viruses.


Subject(s)
COVID-19/etiology , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/virology , SARS-CoV-2/pathogenicity , Systemic Inflammatory Response Syndrome/etiology , Biomarkers/blood , COVID-19/epidemiology , COVID-19/immunology , Child , Cytokines/blood , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Inflammation/etiology , Inflammation/genetics , Inflammation/immunology , Inflammation Mediators/blood , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/virology , Models, Biological , Mucocutaneous Lymph Node Syndrome/epidemiology , Pandemics , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/immunology
16.
J Clin Immunol ; 41(5): 914-922, 2021 07.
Article in English | MEDLINE | ID: covidwho-1182268

ABSTRACT

BACKGROUND: In a recent study, autoantibodies neutralizing type I interferons (IFNs) were present in at least 10% of cases of critical COVID-19 pneumonia. These autoantibodies neutralized most type I IFNs but rarely IFN-beta. OBJECTIVES: We aimed to define the prevalence of autoantibodies neutralizing type I IFN in a cohort of patients with severe COVID-19 pneumonia treated with IFN-beta-1b during hospitalization and to analyze their impact on various clinical variables and outcomes. METHODS: We analyzed stored serum/plasma samples and clinical data of COVID-19 patients treated subcutaneously with IFN-beta-1b from March to May 2020, at the Infanta Leonor University Hospital in Madrid, Spain. RESULTS: The cohort comprised 47 COVID-19 patients with severe pneumonia, 16 of whom (34%) had a critical progression requiring ICU admission. The median age was 71 years, with 28 men (58.6%). Type I IFN-alpha- and omega-neutralizing autoantibodies were found in 5 of 47 patients with severe pneumonia or critical disease (10.6%), while they were not found in any of the 118 asymptomatic controls (p = 0.0016). The autoantibodies did not neutralize IFN-beta. No demographic, comorbidity, or clinical differences were seen between individuals with or without autoantibodies. We found a significant correlation between the presence of neutralizing autoantibodies and higher C-reactive protein levels (p = 5.10e-03) and lower lymphocyte counts (p = 1.80e-02). No significant association with response to IFN-beta-1b therapy (p = 0.34) was found. Survival analysis suggested that neutralizing autoantibodies may increase the risk of death (4/5, 80% vs 12/42, 28.5%). CONCLUSION: Autoantibodies neutralizing type I IFN underlie severe/critical COVID-19 stages in at least 10% of cases, correlate with increased C-RP and lower lymphocyte counts, and confer a trend towards increased risk of death. Subcutaneous IFN-beta treatment of hospitalized patients did not seem to improve clinical outcome. Studies of earlier, ambulatory IFN-beta treatment are warranted.


Subject(s)
Antibodies, Neutralizing/blood , Autoantibodies/blood , COVID-19/immunology , Interferon Type I/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , C-Reactive Protein/analysis , Female , Hospitalization , Humans , Male , Middle Aged
17.
Cell Death Dis ; 12(4): 310, 2021 03 24.
Article in English | MEDLINE | ID: covidwho-1149708

ABSTRACT

SARS-CoV-2 is responsible for the ongoing world-wide pandemic which has already taken more than two million lives. Effective treatments are urgently needed. The enzymatic activity of the HECT-E3 ligase family members has been implicated in the cell egression phase of deadly RNA viruses such as Ebola through direct interaction of its VP40 Protein. Here we report that HECT-E3 ligase family members such as NEDD4 and WWP1 interact with and ubiquitylate the SARS-CoV-2 Spike protein. Furthermore, we find that HECT family members are overexpressed in primary samples derived from COVID-19 infected patients and COVID-19 mouse models. Importantly, rare germline activating variants in the NEDD4 and WWP1 genes are associated with severe COVID-19 cases. Critically, I3C, a natural NEDD4 and WWP1 inhibitor from Brassicaceae, displays potent antiviral effects and inhibits viral egression. In conclusion, we identify the HECT family members of E3 ligases as likely novel biomarkers for COVID-19, as well as new potential targets of therapeutic strategy easily testable in clinical trials in view of the established well-tolerated nature of the Brassicaceae natural compounds.


Subject(s)
COVID-19/drug therapy , COVID-19/enzymology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , Adult , Aged , Animals , Antiviral Agents/pharmacology , COVID-19/genetics , COVID-19/metabolism , Chlorocebus aethiops , Endosomal Sorting Complexes Required for Transport/metabolism , Female , Humans , Indoles/pharmacology , Male , Mice , Mice, Inbred BALB C , Middle Aged , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Vero Cells
18.
J Exp Med ; 218(4)2021 04 05.
Article in English | MEDLINE | ID: covidwho-1066211

ABSTRACT

Yellow fever virus (YFV) live attenuated vaccine can, in rare cases, cause life-threatening disease, typically in patients with no previous history of severe viral illness. Autosomal recessive (AR) complete IFNAR1 deficiency was reported in one 12-yr-old patient. Here, we studied seven other previously healthy patients aged 13 to 80 yr with unexplained life-threatening YFV vaccine-associated disease. One 13-yr-old patient had AR complete IFNAR2 deficiency. Three other patients vaccinated at the ages of 47, 57, and 64 yr had high titers of circulating auto-Abs against at least 14 of the 17 individual type I IFNs. These antibodies were recently shown to underlie at least 10% of cases of life-threatening COVID-19 pneumonia. The auto-Abs were neutralizing in vitro, blocking the protective effect of IFN-α2 against YFV vaccine strains. AR IFNAR1 or IFNAR2 deficiency and neutralizing auto-Abs against type I IFNs thus accounted for more than half the cases of life-threatening YFV vaccine-associated disease studied here. Previously healthy subjects could be tested for both predispositions before anti-YFV vaccination.


Subject(s)
Antibodies, Neutralizing/immunology , Autoantibodies/immunology , Autoimmune Diseases , COVID-19 , Genetic Diseases, Inborn , Interferon-alpha , Receptor, Interferon alpha-beta , SARS-CoV-2 , Yellow Fever Vaccine , Yellow fever virus , Adolescent , Adult , Aged , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , COVID-19/genetics , COVID-19/immunology , Female , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/immunology , HEK293 Cells , Humans , Interferon-alpha/genetics , Interferon-alpha/immunology , Male , Middle Aged , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Yellow Fever Vaccine/adverse effects , Yellow Fever Vaccine/genetics , Yellow Fever Vaccine/immunology , Yellow fever virus/genetics , Yellow fever virus/immunology
19.
JCI Insight ; 6(4)2021 02 22.
Article in English | MEDLINE | ID: covidwho-1047074

ABSTRACT

Four endemic human coronaviruses (HCoVs) are commonly associated with acute respiratory infection in humans. B cell responses to these "common cold" viruses remain incompletely understood. Here we report a comprehensive analysis of CoV-specific antibody repertoires in 231 children and 1168 adults using phage immunoprecipitation sequencing. Seroprevalence of antibodies against endemic HCoVs ranged between approximately 4% and 27% depending on the species and cohort. We identified at least 136 novel linear B cell epitopes. Antibody repertoires against endemic HCoVs were qualitatively different between children and adults in that anti-HCoV IgG specificities more frequently found among children targeted functionally important and structurally conserved regions of the spike, nucleocapsid, and matrix proteins. Moreover, antibody specificities targeting the highly conserved fusion peptide region and S2' cleavage site of the spike protein were broadly cross-reactive with peptides of epidemic human and nonhuman coronaviruses. In contrast, an acidic tandem repeat in the N-terminal region of the Nsp3 subdomain of the HCoV-HKU1 polyprotein was the predominant target of antibody responses in adult donors. Our findings shed light on the dominant species-specific and pan-CoV target sites of human antibody responses to coronavirus infection, thereby providing important insights for the development of prophylactic or therapeutic monoclonal antibodies and vaccine design.


Subject(s)
Antibodies, Viral/isolation & purification , Common Cold/virology , Coronavirus Infections/immunology , Coronavirus/immunology , Endemic Diseases , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody Specificity , Antigens, Viral/blood , Antigens, Viral/immunology , Child , Child, Preschool , Common Cold/blood , Common Cold/epidemiology , Common Cold/immunology , Coronavirus/isolation & purification , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Cross Reactions , Epitopes, B-Lymphocyte/blood , Epitopes, B-Lymphocyte/immunology , Female , Humans , Male , Middle Aged , Protein Domains/immunology , Retrospective Studies , Seroepidemiologic Studies , Viral Proteins/immunology
20.
Med (N Y) ; 1(1): 14-20, 2020 12 18.
Article in English | MEDLINE | ID: covidwho-988793

ABSTRACT

The risk of life-threatening COVID-19 pneumonia increases sharply after 65 years of age, but other epidemiological risk factors, genetic or otherwise, are modest. Various rare monogenic inborn errors of type I interferons (IFNs) underlie critical disease, and neutralizing autoantibodies against type I IFNs account for at least 10% of critical cases.


Subject(s)
COVID-19 , Interferon Type I , Autoantibodies , Humans , Inflammation , Interferon Type I/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL