Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Kidney360 ; 1(12): 1339-1344, 2020 12 31.
Article in English | MEDLINE | ID: covidwho-1776861

ABSTRACT

Background: AKI has been reported in patients with COVID-19 pneumonia and it is associated with higher mortality. The aim of our study is to describe characteristics, outcomes, and 60-day hospital mortality of patients with COVID-19 pneumonia and AKI in the intensive care unit (ICU). Methods: We conducted a retrospective study in which all adult patients with confirmed COVID-19 who were admitted to ICUs of Montefiore Medical Center and developing AKI were included. The study period ranged from March 10 to April 11, 2020. The 60-day follow-up data through June 11, 2020 were obtained. Results: Of 300 adults admitted to the ICUs with COVID-19 pneumonia, 224 patients (75%) presented with AKI or developed AKI subsequent to admission. A total of 218 (97%) patients required invasive mechanical ventilation for moderate to severe acute respiratory distress syndrome (ARDS). A total of 113 (50%) patients had AKI on day 1 of ICU admission. The peak AKI stages observed were stage 1 in 49 (22%), stage 2 in 35 (16%), and stage 3 in 140 (63%) patients, respectively. Among patients with AKI, 114 patients (51%) required RRT. The mortality rate of patients requiring RRT was 70%. Of the 34 patients who were survivors, 25 (74%) were able to be weaned off RRT completely before hospital discharge. Nonsurvivors were older and had significantly higher admission and peak creatinine levels, admission hemoglobin, and peak phosphate levels compared with survivors. The 60-day hospital mortality was 67%. Conclusions: COVID-19 requiring ICU admission is associated with high incidence of severe AKI, necessitating RRT in approximately half of such patients. The majority of patients with COVID-19 and AKI in ICU developed moderate to severe ARDS, requiring invasive mechanical ventilation. Timing or severity of AKI did not affect outcomes. The 60-day hospital mortality is high (67%). Patients with AKI requiring RRT have high mortality, but survivors have good rates of RRT recovery. Podcast: This article contains a podcast at https://www.asn-online.org/media/podcast/K360/2020_12_31_KID0004282020.mp3.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/therapy , Adult , COVID-19/therapy , Hospital Mortality , Humans , Intensive Care Units , Renal Replacement Therapy/adverse effects , Retrospective Studies
2.
Clin Infect Dis ; 73(8): 1459-1468, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1490480

ABSTRACT

BACKGROUND: Influenza vaccine effectiveness (VE) against a spectrum of severe disease, including critical illness and death, remains poorly characterized. METHODS: We conducted a test-negative study in an intensive care unit (ICU) network at 10 US hospitals to evaluate VE for preventing influenza-associated severe acute respiratory infection (SARI) during the 2019-2020 season, which was characterized by circulation of drifted A/H1N1 and B-lineage viruses. Cases were adults hospitalized in the ICU and a targeted number outside the ICU (to capture a spectrum of severity) with laboratory-confirmed, influenza-associated SARI. Test-negative controls were frequency-matched based on hospital, timing of admission, and care location (ICU vs non-ICU). Estimates were adjusted for age, comorbidities, and other confounders. RESULTS: Among 638 patients, the median (interquartile) age was 57 (44-68) years; 286 (44.8%) patients were treated in the ICU and 42 (6.6%) died during hospitalization. Forty-five percent of cases and 61% of controls were vaccinated, which resulted in an overall VE of 32% (95% CI: 2-53%), including 28% (-9% to 52%) against influenza A and 52% (13-74%) against influenza B. VE was higher in adults 18-49 years old (62%; 95% CI: 27-81%) than those aged 50-64 years (20%; -48% to 57%) and ≥65 years old (-3%; 95% CI: -97% to 46%) (P = .0789 for interaction). VE was significantly higher against influenza-associated death (80%; 95% CI: 4-96%) than nonfatal influenza illness. CONCLUSIONS: During a season with drifted viruses, vaccination reduced severe influenza-associated illness among adults by 32%. VE was high among young adults.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adolescent , Adult , Aged , Case-Control Studies , Humans , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Middle Aged , Seasons , United States/epidemiology , Vaccination , Young Adult
3.
MMWR Morb Mortal Wkly Rep ; 69(47): 1762-1766, 2020 Nov 27.
Article in English | MEDLINE | ID: covidwho-1389859

ABSTRACT

Most persons infected with SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), develop virus-specific antibodies within several weeks, but antibody titers might decline over time. Understanding the timeline of antibody decline is important for interpreting SARS-CoV-2 serology results. Serum specimens were collected from a convenience sample of frontline health care personnel at 13 hospitals and tested for antibodies to SARS-CoV-2 during April 3-June 19, 2020, and again approximately 60 days later to assess this timeline. The percentage of participants who experienced seroreversion, defined as an antibody signal-to-threshold ratio >1.0 at baseline and <1.0 at the follow-up visit, was assessed. Overall, 194 (6.0%) of 3,248 participants had detectable antibodies to SARS-CoV-2 at baseline (1). Upon repeat testing approximately 60 days later (range = 50-91 days), 146 (93.6%) of 156 participants experienced a decline in antibody response indicated by a lower signal-to-threshold ratio at the follow-up visit, compared with the baseline visit, and 44 (28.2%) experienced seroreversion. Participants with higher initial antibody responses were more likely to have antibodies detected at the follow-up test than were those who had a lower initial antibody response. Whether decay in these antibodies increases risk for reinfection and disease remains unanswered. However, these results suggest that serology testing at a single time point is likely to underestimate the number of persons with previous SARS-CoV-2 infection, and a negative serologic test result might not reliably exclude prior infection.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/immunology , Personnel, Hospital/statistics & numerical data , Pneumonia, Viral/immunology , Adult , COVID-19 , Coronavirus Infections/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , United States/epidemiology
4.
MMWR Morb Mortal Wkly Rep ; 69(35): 1221-1226, 2020 Sep 04.
Article in English | MEDLINE | ID: covidwho-1389852

ABSTRACT

Health care personnel (HCP) caring for patients with coronavirus disease 2019 (COVID-19) might be at high risk for contracting SARS-CoV-2, the virus that causes COVID-19. Understanding the prevalence of and factors associated with SARS-CoV-2 infection among frontline HCP who care for COVID-19 patients are important for protecting both HCP and their patients. During April 3-June 19, 2020, serum specimens were collected from a convenience sample of frontline HCP who worked with COVID-19 patients at 13 geographically diverse academic medical centers in the United States, and specimens were tested for antibodies to SARS-CoV-2. Participants were asked about potential symptoms of COVID-19 experienced since February 1, 2020, previous testing for acute SARS-CoV-2 infection, and their use of personal protective equipment (PPE) in the past week. Among 3,248 participants, 194 (6.0%) had positive test results for SARS-CoV-2 antibodies. Seroprevalence by hospital ranged from 0.8% to 31.2% (median = 3.6%). Among the 194 seropositive participants, 56 (29%) reported no symptoms since February 1, 2020, 86 (44%) did not believe that they previously had COVID-19, and 133 (69%) did not report a previous COVID-19 diagnosis. Seroprevalence was lower among personnel who reported always wearing a face covering (defined in this study as a surgical mask, N95 respirator, or powered air purifying respirator [PAPR]) while caring for patients (5.6%), compared with that among those who did not (9.0%) (p = 0.012). Consistent with persons in the general population with SARS-CoV-2 infection, many frontline HCP with SARS-CoV-2 infection might be asymptomatic or minimally symptomatic during infection, and infection might be unrecognized. Enhanced screening, including frequent testing of frontline HCP, and universal use of face coverings in hospitals are two strategies that could reduce SARS-CoV-2 transmission.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/epidemiology , Personnel, Hospital/statistics & numerical data , Pneumonia, Viral/epidemiology , Academic Medical Centers , Adult , Asymptomatic Diseases , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Cross Infection/prevention & control , Female , Humans , Infectious Disease Transmission, Professional-to-Patient/prevention & control , Male , Middle Aged , Pandemics/prevention & control , Personal Protective Equipment/statistics & numerical data , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2 , Seroepidemiologic Studies , United States/epidemiology
5.
Crit Care Explor ; 3(3): e0361, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1158026

ABSTRACT

OBJECTIVES: Given finite ICU bed capacity, knowledge of ICU bed utilization during the coronavirus disease 2019 pandemic is critical to ensure future strategies for resource allocation and utilization. We sought to examine ICU census trends in relation to ICU bed capacity during the rapid increase in severe coronavirus disease 2019 cases early during the pandemic. DESIGN: Observational cohort study. SETTING: Thirteen geographically dispersed academic medical centers in the United States. PATIENTS/SUBJECTS: We obtained daily ICU censuses from March 26 to June 30, 2020, as well as prepandemic ICU bed capacities. The primary outcome was daily census of ICU patients stratified by coronavirus disease 2019 and mechanical ventilation status in relation to ICU capacity. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Prepandemic overall ICU capacity ranged from 62 to 225 beds (median 109). During the study period, the median daily coronavirus disease 2019 ICU census per hospital ranged from 1 to 84 patients, and the daily ICU census exceeded overall ICU capacity for at least 1 day at five institutions. The number of critically ill patients exceeded ICU capacity for a median (interquartile range) of 17 (12-50) of 97 days at these five sites. All 13 institutions experienced decreases in their noncoronavirus disease ICU population, whereas local coronavirus disease 2019 cases increased. Coronavirus disease 2019 patients reached their greatest proportion of ICU capacity on April 12, 2020, when they accounted for 44% of ICU patients across all participating hospitals. Maximum ICU census ranged from 52% to 289% of overall ICU capacity, with three sites less than 80%, four sites 80-100%, five sites 100-128%, and one site 289%. CONCLUSIONS: From March to June 2020, the coronavirus disease 2019 pandemic led to ICU censuses greater than ICU bed capacity at fives of 13 institutions evaluated. These findings demonstrate the short-term adaptability of U.S. healthcare institutions in redirecting limited resources to accommodate a public health emergency.

6.
Crit Care Explor ; 3(2): e0348, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1093604

ABSTRACT

To determine the association between prone positioning in nonintubated patients with coronavirus disease 2019 and frequency of invasive mechanical ventilation or inhospital mortality. DESIGN: A nested case-matched control analysis. SETTING: Three hospital sites in Bronx, NY. PATIENTS: Adult coronavirus disease 2019 patients admitted between March 1, 2020, and April 1, 2020. We excluded patients with do-not-intubate orders. Cases were defined by invasive mechanical ventilation or inhospital mortality. Each case was matched with two controls based on age, gender, admission date, and hospital length of stay greater than index time of matched case via risk-set sampling. The presence of nonintubated proning was identified from provider documentation. INTERVENTION: Nonintubated proning documented prior to invasive mechanical ventilation or inhospital mortality for cases or prior to corresponding index time for matched controls. MEASUREMENTS AND MAIN RESULTS: We included 600 patients, 41 (6.8%) underwent nonintubated proning. Cases had lower Spo2/Fio2 ratios prior to invasive mechanical ventilation or inhospital mortality compared with controls (case median, 97 [interquartile range, 90-290] vs control median, 404 [interquartile range, 296-452]). Although most providers (58.5%) documented immediate improvement in oxygenation status after initiating nonintubated proning, there was no difference in worst Spo2/Fio2 ratios before and after nonintubated proning in both case and control (case median Spo2/Fio2 ratio difference, 3 [interquartile range, -3 to 8] vs control median Spo2/Fio2 ratio difference, 0 [interquartile range, -3 to 50]). In the univariate analysis, patients who underwent nonintubated proning were 2.57 times more likely to require invasive mechanical ventilation or experience inhospital mortality (hazard ratio, 2.57; 95% CI, 1.17-5.64; p = 0.02). Following adjustment for patient level differences, we found no association between nonintubated proning and invasive mechanical ventilation or inhospital mortality (adjusted hazard ratio, 0.92; 95% CI, 0.34-2.45; p = 0.86). CONCLUSIONS: There was no significant association with reduced risk of invasive mechanical ventilation or inhospital mortality after adjusting for baseline severity of illness and oxygenation status.

7.
J Intensive Care Med ; 36(12): 1483-1490, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-817975

ABSTRACT

BACKGROUND: Covid-19 associated coagulopathy (CAC) is associated with prothrombotic state and thromboembolism. However, true incidence of thromboembolic events is difficult to determine in the ICU setting. The aim of our study was to investigate the cumulative incidence of thromboembolic events in Covid-19 patients needing intensive care unit (ICU) admission and assessing the utility of point of care ultrasound (POCUS) to screen for and diagnose lower extremity deep venous thrombosis (DVT). METHODS: We conducted a prospective observational study between April 22nd and May 26th, 2020 where all adult patients with the diagnosis of Covid-19 pneumonia admitted to 8 ICUs of Montefiore Medical Center were included. POCUS exam was performed on all patients at day 1 of ICU admission and at day 7 and 14 after the first exam. RESULTS: The primary outcome was to study the cumulative incidence of thromboembolic events in Covid-19 patients needing ICU admission. A total of 107 patients were included. All patients got POCUS exam on day 1 in the ICU, 62% got day 7 and 41% got day 14 exam. POCUS diagnosed 17 lower extremity DVTs on day 1, 3 new on day 7 and 1 new on day 14. Forty patients developed 52 thromboembolic events, with the rate of 37.3%. We found a high 45-day cumulative incidence of thromboembolic events of 37% and a high 45-day cumulative incidence of lower and upper extremity DVT of 21% and 10% respectively. Twelve (30%) patients had failure of therapeutic anticoagulation. Occurrence of a thromboembolic event was not associated with a higher risk of mortality (HR 1.08, p value = .81). CONCLUSIONS: Covid-19 patients in ICU have a high cumulative incidence of thromboembolic events, but not associated with higher mortality. POCUS is an excellent tool to help screen and diagnose DVT during a pandemic.


Subject(s)
COVID-19 , Thromboembolism , Adult , Humans , Intensive Care Units , Point-of-Care Systems , SARS-CoV-2 , Thromboembolism/epidemiology , Thromboembolism/etiology
8.
Crit Care Med ; 48(6): e440-e469, 2020 06.
Article in English | MEDLINE | ID: covidwho-685042

ABSTRACT

BACKGROUND: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a rapidly spreading illness, Coronavirus Disease 2019 (COVID-19), affecting thousands of people around the world. Urgent guidance for clinicians caring for the sickest of these patients is needed. METHODS: We formed a panel of 36 experts from 12 countries. All panel members completed the World Health Organization conflict of interest disclosure form. The panel proposed 53 questions that are relevant to the management of COVID-19 in the ICU. We searched the literature for direct and indirect evidence on the management of COVID-19 in critically ill patients in the ICU. We identified relevant and recent systematic reviews on most questions relating to supportive care. We assessed the certainty in the evidence using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach, then generated recommendations based on the balance between benefit and harm, resource and cost implications, equity, and feasibility. Recommendations were either strong or weak, or in the form of best practice recommendations. RESULTS: The Surviving Sepsis Campaign COVID-19 panel issued 54 statements, of which four are best practice statements, nine are strong recommendations, and 35 are weak recommendations. No recommendation was provided for six questions. The topics were: 1) infection control, 2) laboratory diagnosis and specimens, 3) hemodynamic support, 4) ventilatory support, and 5) COVID-19 therapy. CONCLUSION: The Surviving Sepsis Campaign COVID-19 panel issued several recommendations to help support healthcare workers caring for critically ill ICU patients with COVID-19. When available, we will provide new evidence in further releases of these guidelines.


Subject(s)
Coronavirus Infections/therapy , Intensive Care Units/organization & administration , Pneumonia, Viral/therapy , Practice Guidelines as Topic/standards , Betacoronavirus , COVID-19 , Critical Illness , Diagnostic Techniques and Procedures/standards , Humans , Infection Control/methods , Infection Control/standards , Intensive Care Units/standards , Pandemics , Respiration, Artificial/methods , Respiration, Artificial/standards , SARS-CoV-2 , Shock/therapy
9.
MMWR Morb Mortal Wkly Rep ; 69(30): 993-998, 2020 Jul 31.
Article in English | MEDLINE | ID: covidwho-672195

ABSTRACT

Prolonged symptom duration and disability are common in adults hospitalized with severe coronavirus disease 2019 (COVID-19). Characterizing return to baseline health among outpatients with milder COVID-19 illness is important for understanding the full spectrum of COVID-19-associated illness and tailoring public health messaging, interventions, and policy. During April 15-June 25, 2020, telephone interviews were conducted with a random sample of adults aged ≥18 years who had a first positive reverse transcription-polymerase chain reaction (RT-PCR) test for SARS-CoV-2, the virus that causes COVID-19, at an outpatient visit at one of 14 U.S. academic health care systems in 13 states. Interviews were conducted 14-21 days after the test date. Respondents were asked about demographic characteristics, baseline chronic medical conditions, symptoms present at the time of testing, whether those symptoms had resolved by the interview date, and whether they had returned to their usual state of health at the time of interview. Among 292 respondents, 94% (274) reported experiencing one or more symptoms at the time of testing; 35% of these symptomatic respondents reported not having returned to their usual state of health by the date of the interview (median = 16 days from testing date), including 26% among those aged 18-34 years, 32% among those aged 35-49 years, and 47% among those aged ≥50 years. Among respondents reporting cough, fatigue, or shortness of breath at the time of testing, 43%, 35%, and 29%, respectively, continued to experience these symptoms at the time of the interview. These findings indicate that COVID-19 can result in prolonged illness even among persons with milder outpatient illness, including young adults. Effective public health messaging targeting these groups is warranted. Preventative measures, including social distancing, frequent handwashing, and the consistent and correct use of face coverings in public, should be strongly encouraged to slow the spread of SARS-CoV-2.


Subject(s)
Ambulatory Care , Coronavirus Infections/complications , Coronavirus Infections/therapy , Delivery of Health Care/organization & administration , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Recovery of Function , Adolescent , Adult , COVID-19 , Coronavirus Infections/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Risk Factors , Time Factors , Treatment Outcome , United States/epidemiology , Young Adult
10.
Intensive Care Med ; 46(5): 854-887, 2020 05.
Article in English | MEDLINE | ID: covidwho-17690

ABSTRACT

BACKGROUND: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a rapidly spreading illness, Coronavirus Disease 2019 (COVID-19), affecting thousands of people around the world. Urgent guidance for clinicians caring for the sickest of these patients is needed. METHODS: We formed a panel of 36 experts from 12 countries. All panel members completed the World Health Organization conflict of interest disclosure form. The panel proposed 53 questions that are relevant to the management of COVID-19 in the ICU. We searched the literature for direct and indirect evidence on the management of COVID-19 in critically ill patients in the ICU. We identified relevant and recent systematic reviews on most questions relating to supportive care. We assessed the certainty in the evidence using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach, then generated recommendations based on the balance between benefit and harm, resource and cost implications, equity, and feasibility. Recommendations were either strong or weak, or in the form of best practice recommendations. RESULTS: The Surviving Sepsis Campaign COVID-19 panel issued 54 statements, of which 4 are best practice statements, 9 are strong recommendations, and 35 are weak recommendations. No recommendation was provided for 6 questions. The topics were: (1) infection control, (2) laboratory diagnosis and specimens, (3) hemodynamic support, (4) ventilatory support, and (5) COVID-19 therapy. CONCLUSION: The Surviving Sepsis Campaign COVID-19 panel issued several recommendations to help support healthcare workers caring for critically ill ICU patients with COVID-19. When available, we will provide new recommendations in further releases of these guidelines.


Subject(s)
Coronavirus Infections/therapy , Critical Care/standards , Intensive Care Units/standards , Pneumonia, Viral/therapy , Sepsis/therapy , COVID-19 , Coronavirus Infections/prevention & control , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Sepsis/diagnosis , Sepsis/etiology , Survivors
SELECTION OF CITATIONS
SEARCH DETAIL