Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Vaccine ; 41(25): 3701-3709, 2023 06 07.
Article in English | MEDLINE | ID: covidwho-20235822

ABSTRACT

BACKGROUND: Within-host models describe the dynamics of immune cells when encountering a pathogen, and how these dynamics can lead to an individual-specific immune response. This systematic review aims to summarize which within-host methodology has been used to study and quantify antibody kinetics after infection or vaccination. In particular, we focus on data-driven and theory-driven mechanistic models. MATERIALS: PubMed and Web of Science databases were used to identify eligible papers published until May 2022. Eligible publications included those studying mathematical models that measure antibody kinetics as the primary outcome (ranging from phenomenological to mechanistic models). RESULTS: We identified 78 eligible publications, of which 8 relied on an Ordinary Differential Equations (ODEs)-based modelling approach to describe antibody kinetics after vaccination, and 12 studies used such models in the context of humoral immunity induced by natural infection. Mechanistic modeling studies were summarized in terms of type of study, sample size, measurements collected, antibody half-life, compartments and parameters included, inferential or analytical method, and model selection. CONCLUSIONS: Despite the importance of investigating antibody kinetics and underlying mechanisms of (waning of) the humoral immunity, few publications explicitly account for this in a mathematical model. In particular, most research focuses on phenomenological rather than mechanistic models. The limited information on the age groups or other risk factors that might impact antibody kinetics, as well as a lack of experimental or observational data remain important concerns regarding the interpretation of mathematical modeling results. We reviewed the similarities between the kinetics following vaccination and infection, emphasising that it may be worth translating some features from one setting to another. However, we also stress that some biological mechanisms need to be distinguished. We found that data-driven mechanistic models tend to be more simplistic, and theory-driven approaches lack representative data to validate model results.


Subject(s)
Antibody Formation , Vaccination , Immunity, Humoral , Models, Theoretical
2.
Nephrol Dial Transplant ; 37(8): 1566-1575, 2022 07 26.
Article in English | MEDLINE | ID: covidwho-2285451

ABSTRACT

BACKGROUND: In the general population, the seroconversion rate after primary vaccination with two doses of an anti-severe acute respiratory syndrome coronavirus 2 messenger RNA (mRNA) vaccine reaches nearly 100%, with significantly higher antibody titers after mRNA-1273 vaccination compared to BNT162b2 vaccination. Here we performed a systematic review and meta-analysis to compare the antibody response after two-dose mRNA-1273 versus BNT162b2 vaccination in solid organ transplant (SOT) recipients. METHODS: A systematic literature review was performed using PubMed, Web of Science and the Cochrane Library and original research papers were included for a meta-analysis to calculate vaccine-specific seroconversion rates for each of the mRNA vaccines. Next, the pooled relative seroconversion rate was estimated. RESULTS: Eight studies that described the development of antibodies against receptor-binding domain (RBD) and/or spike protein were eligible for meta-analysis. Two of these studies also reported antibody titers. The meta-analysis revealed lower seroconversion rates in SOT recipients vaccinated with two doses of BNT162b2 {44.3% [95% confidence interval (CI) 34.1-54.7]} as compared with patients vaccinated with two doses of mRNA-1273 [58.4% (95% CI 47.2-69.2)]. The relative seroconversion rate was 0.795 (95% CI 0.732-0.864). CONCLUSIONS: This systematic review and meta-analysis indicates that in SOT recipients, higher seroconversion rates were observed after vaccination with mRNA-1273 compared with BNT162b2.


Subject(s)
COVID-19 , Organ Transplantation , Vaccines , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , RNA, Messenger , Seroconversion , Transplant Recipients , Vaccination
3.
PLoS Comput Biol ; 18(8): e1009980, 2022 08.
Article in English | MEDLINE | ID: covidwho-2002266

ABSTRACT

Superspreading events play an important role in the spread of several pathogens, such as SARS-CoV-2. While the basic reproduction number of the original Wuhan SARS-CoV-2 is estimated to be about 3 for Belgium, there is substantial inter-individual variation in the number of secondary cases each infected individual causes-with most infectious individuals generating no or only a few secondary cases, while about 20% of infectious individuals is responsible for 80% of new infections. Multiple factors contribute to the occurrence of superspreading events: heterogeneity in infectiousness, individual variations in susceptibility, differences in contact behavior, and the environment in which transmission takes place. While superspreading has been included in several infectious disease transmission models, research into the effects of different forms of superspreading on the spread of pathogens remains limited. To disentangle the effects of infectiousness-related heterogeneity on the one hand and contact-related heterogeneity on the other, we implemented both forms of superspreading in an individual-based model describing the transmission and spread of SARS-CoV-2 in a synthetic Belgian population. We considered its impact on viral spread as well as on epidemic resurgence after a period of social distancing. We found that the effects of superspreading driven by heterogeneity in infectiousness are different from the effects of superspreading driven by heterogeneity in contact behavior. On the one hand, a higher level of infectiousness-related heterogeneity results in a lower risk of an outbreak persisting following the introduction of one infected individual into the population. Outbreaks that did persist led to fewer total cases and were slower, with a lower peak which occurred at a later point in time, and a lower herd immunity threshold. Finally, the risk of resurgence of an outbreak following a period of lockdown decreased. On the other hand, when contact-related heterogeneity was high, this also led to fewer cases in total during persistent outbreaks, but caused outbreaks to be more explosive in regard to other aspects (such as higher peaks which occurred earlier, and a higher herd immunity threshold). Finally, the risk of resurgence of an outbreak following a period of lockdown increased. We found that these effects were conserved when testing combinations of infectiousness-related and contact-related heterogeneity.


Subject(s)
COVID-19 , SARS-CoV-2 , Basic Reproduction Number , COVID-19/epidemiology , Communicable Disease Control/methods , Disease Outbreaks , Humans
4.
Am J Clin Nutr ; 116(2): 289-292, 2022 08 04.
Article in English | MEDLINE | ID: covidwho-1992091

ABSTRACT

An acute shortage of infant formulas in the United States occurred in early 2022, exacerbating a longer-standing, less severe shortage that has occurred over the last several years. The shortage has been particularly problematic for specialized formulas such as those needed for infants and children with food allergies, intestinal failure, kidney disease, and metabolic disorders. Although undoubtedly the magnitude of the current shortage will abate over time, it has affected many children and caused tremendous distress for thousands of families. We propose a series of interventions to be undertaken as soon as feasible to help ensure that the conditions that led to this problem do not recur and families regain confidence in the safety and supply reliability of formulas for infants and young children regardless of their medical needs.


Subject(s)
Food Hypersensitivity , Infant Formula , Child , Child, Preschool , Food Hypersensitivity/prevention & control , Humans , Infant , Infant Food , Reproducibility of Results , United States
5.
Transpl Immunol ; 74: 101670, 2022 10.
Article in English | MEDLINE | ID: covidwho-1984170

ABSTRACT

BACKGROUND: SARS-CoV-2 vaccination is strongly recommended in kidney transplant recipients (KTR) and dialysis patients. Whether these vaccinations may trigger alloantibodies, is still debated. METHODS: In the current study we evaluated the effect of SARS-CoV-2 mRNA vaccines on anti-Human Leukocyte Antigen (HLA) and 60 anti-non-HLA antibody profiles in clinically stable KTR and dialysis patients. In total, we included 28 KTR, 30 patients on haemodialysis, 25 patients on peritoneal dialysis and 31 controls with a positive seroresponse 16-21 days after the first dose of either the SARS-CoV-2 mRNA BNT162b2 or mRNA-1273 vaccine. Both anti-HLA and anti-non-HLA antibodies were determined prior to vaccination and 21 to 35 days after the second vaccine dose. RESULTS: Overall, the proportion of patients with detectable anti-HLA antibodies was similar before and after vaccination (class I 14% vs. 16%, p = 0.48; class II 25% before and after vaccination). After vaccination, there was no pattern in 1) additionally detected anti-HLA antibodies, or 2) the levels of pre-existing ones. Additional anti-non-HLA antibodies were detected in 30% of the patients, ranging from 1 to 5 new anti-non-HLA antibodies per patient. However, the clinical significance of anti-non-HLA antibodies is still a matter of debate. To date, only a significant association has been found for anti-non-HLA ARHGDIB antibodies and long-term kidney graft loss. No additionally developed anti-ARHGDIB antibodies or elevated level of existing anti-ARHGDIB antibodies was observed. CONCLUSION: The current data indicate that SARS-CoV-2 mRNA vaccination does not induce anti-HLA or anti-non-HLA antibodies, corroborating the importance of vaccinating KTR and dialysis patients.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Graft Rejection , HLA Antigens/genetics , Histocompatibility Antigens , Histocompatibility Antigens Class I , Histocompatibility Antigens Class II , Humans , RNA, Messenger , Renal Dialysis , Vaccination , rho Guanine Nucleotide Dissociation Inhibitor beta
6.
Vaccine ; 40(26): 3676-3683, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1852210

ABSTRACT

Vaccine-preventable diseases, such as measles, have been re-emerging in countries with moderate to high vaccine uptake. It is increasingly important to identify and close immunity gaps and increase coverage of routine childhood vaccinations, including two doses of the measles-mumps-rubella vaccine (MMR). Here, we present a simple cohort model relying on a Bayesian approach to evaluate the evolution of measles seroprevalence in Belgium using the three most recent cross-sectional serological survey data collections (2002, 2006 and 2013) and information regarding vaccine properties. We find measles seroprevalence profiles to be similar for the different regions in Belgium. These profiles exhibit a drop in seroprevalence in birth cohorts that were offered vaccination at suboptimal coverages in the first years after routine vaccination has been started up. This immunity gap is observed across all cross-sectional survey years, although it is more pronounced in survey year 2013. At present, the COVID-19 pandemic could negatively impact the immunization coverage worldwide, thereby increasing the need for additional immunization programs in groups of children that are impacted by this. Therefore, it is now even more important to identify existing immunity gaps and to sustain and reach vaccine-derived measles immunity goals.


Subject(s)
COVID-19 , Measles , Mumps , Rubella , Bayes Theorem , Belgium/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Child , Cross-Sectional Studies , Humans , Measles/epidemiology , Measles/prevention & control , Measles-Mumps-Rubella Vaccine , Mumps/prevention & control , Pandemics , Rubella/prevention & control , Seroepidemiologic Studies , Vaccination
7.
PLoS Comput Biol ; 18(3): e1009965, 2022 03.
Article in English | MEDLINE | ID: covidwho-1770639

ABSTRACT

Several important aspects related to SARS-CoV-2 transmission are not well known due to a lack of appropriate data. However, mathematical and computational tools can be used to extract part of this information from the available data, like some hidden age-related characteristics. In this paper, we present a method to investigate age-specific differences in transmission parameters related to susceptibility to and infectiousness upon contracting SARS-CoV-2 infection. More specifically, we use panel-based social contact data from diary-based surveys conducted in Belgium combined with the next generation principle to infer the relative incidence and we compare this to real-life incidence data. Comparing these two allows for the estimation of age-specific transmission parameters. Our analysis implies the susceptibility in children to be around half of the susceptibility in adults, and even lower for very young children (preschooler). However, the probability of adults and the elderly to contract the infection is decreasing throughout the vaccination campaign, thereby modifying the picture over time.


Subject(s)
COVID-19 , Adult , Age Factors , Aged , Belgium/epidemiology , COVID-19/epidemiology , Child , Child, Preschool , Humans , Incidence , SARS-CoV-2
8.
Euro Surveill ; 27(9)2022 03.
Article in English | MEDLINE | ID: covidwho-1731711

ABSTRACT

BackgroundTo control epidemic waves, it is important to know the susceptibility to SARS-CoV-2 and its evolution over time in relation to the control measures taken.AimTo assess the evolving SARS-CoV-2 seroprevalence and seroincidence related to the first national lockdown in Belgium, we performed a nationwide seroprevalence study, stratified by age, sex and region using 3,000-4,000 residual samples during seven periods between 30 March and 17 October 2020.MethodsWe analysed residual sera from ambulatory patients for IgG antibodies against the SARS-CoV-2 S1 protein with a semiquantitative commercial ELISA. Weighted seroprevalence (overall and by age category and sex) and seroincidence during seven consecutive periods were estimated for the Belgian population while accommodating test-specific sensitivity and specificity.ResultsThe weighted overall seroprevalence initially increased from 1.8% (95% credible interval (CrI): 1.0-2.6) to 5.3% (95% CrI: 4.2-6.4), implying a seroincidence of 3.4% (95% CrI: 2.4-4.6) between the first and second collection period over a period of 3 weeks during lockdown (start lockdown mid-March 2020). Thereafter, seroprevalence stabilised, however, significant decreases were observed when comparing the third with the fifth, sixth and seventh period, resulting in negative seroincidence estimates after lockdown was lifted. We estimated for the last collection period mid-October 2020 a weighted overall seroprevalence of 4.2% (95% CrI: 3.1-5.2).ConclusionDuring lockdown, an initially small but increasing fraction of the Belgian population showed serologically detectable signs of exposure to SARS-CoV-2, which did not further increase when confinement measures eased and full lockdown was lifted.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Belgium/epidemiology , COVID-19/epidemiology , Communicable Disease Control , Cross-Sectional Studies , Humans , Immunoglobulin G , Prospective Studies , Seroepidemiologic Studies
9.
Euro Surveill ; 27(7)2022 02.
Article in English | MEDLINE | ID: covidwho-1703383

ABSTRACT

BackgroundCOVID-19 mortality, excess mortality, deaths per million population (DPM), infection fatality ratio (IFR) and case fatality ratio (CFR) are reported and compared for many countries globally. These measures may appear objective, however, they should be interpreted with caution.AimWe examined reported COVID-19-related mortality in Belgium from 9 March 2020 to 28 June 2020, placing it against the background of excess mortality and compared the DPM and IFR between countries and within subgroups.MethodsThe relation between COVID-19-related mortality and excess mortality was evaluated by comparing COVID-19 mortality and the difference between observed and weekly average predictions of all-cause mortality. DPM were evaluated using demographic data of the Belgian population. The number of infections was estimated by a stochastic compartmental model. The IFR was estimated using a delay distribution between infection and death.ResultsIn the study period, 9,621 COVID-19-related deaths were reported, which is close to the excess mortality estimated using weekly averages (8,985 deaths). This translates to 837 DPM and an IFR of 1.5% in the general population. Both DPM and IFR increase with age and are substantially larger in the nursing home population.DiscussionDuring the first pandemic wave, Belgium had no discrepancy between COVID-19-related mortality and excess mortality. In light of this close agreement, it is useful to consider the DPM and IFR, which are both age, sex, and nursing home population-dependent. Comparison of COVID-19 mortality between countries should rather be based on excess mortality than on COVID-19-related mortality.


Subject(s)
COVID-19 , Belgium/epidemiology , Humans , Mortality , Nursing Homes , Pandemics , SARS-CoV-2
10.
PLoS One ; 16(11): e0259908, 2021.
Article in English | MEDLINE | ID: covidwho-1705817

ABSTRACT

INTRODUCTION: The incidence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections in the Belgian community is mainly estimated based on test results of patients with coronavirus disease (COVID-19)-like symptoms. The aim of this study was to investigate the evolution of the SARS-CoV-2 reverse transcriptase polymerase chain reaction (RT-PCR) positivity ratio and distribution of viral loads within a cohort of asymptomatic patients screened prior hospitalization or surgery, stratified by age category. MATERIALS/METHODS: We retrospectively studied data on SARS-CoV-2 real-time RT-PCR detection in respiratory tract samples of asymptomatic patients screened pre-hospitalization or pre-surgery in nine Belgian hospitals located in Flanders over a 12-month period (1 April 2020-31 March 2021). RESULTS: In total, 255925 SARS-CoV-2 RT-PCR test results and 2421 positive results for which a viral load was reported, were included in this study. An unweighted overall SARS-CoV-2 real-time RT-PCR positivity ratio of 1.27% was observed with strong spatiotemporal differences. SARS-CoV-2 circulated predominantly in 80+ year old individuals across all time periods except between the first and second COVID-19 wave and in 20-30 year old individuals before the second COVID-19 wave. In contrast to the first wave, a significantly higher positivity ratio was observed for the 20-40 age group in addition to the 80+ age group compared to the other age groups during the second wave. The median viral load follows a similar temporal evolution as the positivity rate with an increase ahead of the second wave and highest viral loads observed for 80+ year old individuals. CONCLUSION: There was a high SARS-CoV-2 circulation among asymptomatic patients with a predominance and highest viral loads observed in the elderly. Moreover, ahead of the second COVID-19 wave an increase in median viral load was noted with the highest overall positivity ratio observed in 20-30 year old individuals, indicating they could have been the hidden drivers of this wave.


Subject(s)
Asymptomatic Diseases/epidemiology , COVID-19/diagnosis , Respiratory Tract Infections/epidemiology , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Belgium/epidemiology , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Female , Hospitalization , Humans , Male , Middle Aged , Respiratory Tract Infections/pathology , Respiratory Tract Infections/surgery , Respiratory Tract Infections/virology , SARS-CoV-2/pathogenicity , Young Adult
12.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.10.21264753

ABSTRACT

Several important aspects related to SARS-CoV-2 transmission are not well known due to a lack of appropriate data. However, mathematical and computational tools can be used to extract part of this information from the available data, like some hidden age-related characteristics. In this paper, we investigate age-specific differences in susceptibility to and infectiousness upon contracting SARS-CoV-2 infection. More specifically, we use panel-based social contact data from diary-based surveys conducted in Belgium combined with the next generation principle to infer the relative incidence and we compare this to real-life incidence data. Comparing these two allows for the estimation of age-specific transmission parameters. Our analysis implies the susceptibility in children to be around half of the susceptibility in adults, and even lower for very young children (preschooler). However, the probability of adults and the elderly to contract the infection is decreasing throughout the vaccination campaign, thereby modifying the picture over time.

13.
BMC Infect Dis ; 21(1): 503, 2021 May 30.
Article in English | MEDLINE | ID: covidwho-1247578

ABSTRACT

BACKGROUND: In response to the ongoing COVID-19 pandemic, several countries adopted measures of social distancing to a different degree. For many countries, after successfully curbing the initial wave, lockdown measures were gradually lifted. In Belgium, such relief started on May 4th with phase 1, followed by several subsequent phases over the next few weeks. METHODS: We analysed the expected impact of relaxing stringent lockdown measures taken according to the phased Belgian exit strategy. We developed a stochastic, data-informed, meta-population model that accounts for mixing and mobility of the age-structured population of Belgium. The model is calibrated to daily hospitalization data and is able to reproduce the outbreak at the national level. We consider different scenarios for relieving the lockdown, quantified in terms of relative reductions in pre-pandemic social mixing and mobility. We validate our assumptions by making comparisons with social contact data collected during and after the lockdown. RESULTS: Our model is able to successfully describe the initial wave of COVID-19 in Belgium and identifies interactions during leisure/other activities as pivotal in the exit strategy. Indeed, we find a smaller impact of school re-openings as compared to restarting leisure activities and re-openings of work places. We also assess the impact of case isolation of new (suspected) infections, and find that it allows re-establishing relatively more social interactions while still ensuring epidemic control. Scenarios predicting a second wave of hospitalizations were not observed, suggesting that the per-contact probability of infection has changed with respect to the pre-lockdown period. CONCLUSIONS: Contacts during leisure activities are found to be most influential, followed by professional contacts and school contacts, respectively, for an impending second wave of COVID-19. Regular re-assessment of social contacts in the population is therefore crucial to adjust to evolving behavioral changes that can affect epidemic diffusion.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Models, Theoretical , Pandemics , Belgium/epidemiology , Communicable Disease Control , Hospitalization , Humans , Physical Distancing , Schools , Workplace
14.
Epidemics ; 35: 100449, 2021 06.
Article in English | MEDLINE | ID: covidwho-1163747

ABSTRACT

Following the onset of the ongoing COVID-19 pandemic throughout the world, a large fraction of the global population is or has been under strict measures of physical distancing and quarantine, with many countries being in partial or full lockdown. These measures are imposed in order to reduce the spread of the disease and to lift the pressure on healthcare systems. Estimating the impact of such interventions as well as monitoring the gradual relaxing of these stringent measures is quintessential to understand how resurgence of the COVID-19 epidemic can be controlled for in the future. In this paper we use a stochastic age-structured discrete time compartmental model to describe the transmission of COVID-19 in Belgium. Our model explicitly accounts for age-structure by integrating data on social contacts to (i) assess the impact of the lockdown as implemented on March 13, 2020 on the number of new hospitalizations in Belgium; (ii) conduct a scenario analysis estimating the impact of possible exit strategies on potential future COVID-19 waves. More specifically, the aforementioned model is fitted to hospital admission data, data on the daily number of COVID-19 deaths and serial serological survey data informing the (sero)prevalence of the disease in the population while relying on a Bayesian MCMC approach. Our age-structured stochastic model describes the observed outbreak data well, both in terms of hospitalizations as well as COVID-19 related deaths in the Belgian population. Despite an extensive exploration of various projections for the future course of the epidemic, based on the impact of adherence to measures of physical distancing and a potential increase in contacts as a result of the relaxation of the stringent lockdown measures, a lot of uncertainty remains about the evolution of the epidemic in the next months.


Subject(s)
COVID-19/epidemiology , Forecasting/methods , Models, Statistical , Bayes Theorem , Belgium/epidemiology , COVID-19/mortality , COVID-19/prevention & control , Communicable Disease Control , Hospitalization , Humans , SARS-CoV-2/immunology , Seroepidemiologic Studies
15.
Nat Commun ; 12(1): 1524, 2021 03 09.
Article in English | MEDLINE | ID: covidwho-1125619

ABSTRACT

The COVID-19 pandemic caused many governments to impose policies restricting social interactions. A controlled and persistent release of lockdown measures covers many potential strategies and is subject to extensive scenario analyses. Here, we use an individual-based model (STRIDE) to simulate interactions between 11 million inhabitants of Belgium at different levels including extended household settings, i.e., "household bubbles". The burden of COVID-19 is impacted by both the intensity and frequency of physical contacts, and therefore, household bubbles have the potential to reduce hospital admissions by 90%. In addition, we find that it is crucial to complete contact tracing 4 days after symptom onset. Assumptions on the susceptibility of children affect the impact of school reopening, though we find that business and leisure-related social mixing patterns have more impact on COVID-19 associated disease burden. An optimal deployment of the mitigation policies under study require timely compliance to physical distancing, testing and self-isolation.


Subject(s)
COVID-19/transmission , Contact Tracing , Disease Transmission, Infectious/prevention & control , Family Characteristics , Quarantine , Adolescent , Adult , Aged , Aged, 80 and over , Belgium/epidemiology , COVID-19/epidemiology , Child , Child, Preschool , Communicable Disease Control/methods , Health Policy , Hospitalization , Humans , Infant , Infant, Newborn , Middle Aged , Models, Theoretical , Pandemics , SARS-CoV-2/isolation & purification , Schools , Young Adult
16.
Int J Environ Res Public Health ; 17(20)2020 10 17.
Article in English | MEDLINE | ID: covidwho-1005723

ABSTRACT

There are different patterns in the COVID-19 outbreak in the general population and amongst nursing home patients. We investigate the time from symptom onset to diagnosis and hospitalization or the length of stay (LoS) in the hospital, and whether there are differences in the population. Sciensano collected information on 14,618 hospitalized patients with COVID-19 admissions from 114 Belgian hospitals between 14 March and 12 June 2020. The distributions of different event times for different patient groups are estimated accounting for interval censoring and right truncation of the time intervals. The time between symptom onset and hospitalization or diagnosis are similar, with median length between symptom onset and hospitalization ranging between 3 and 10.4 days, depending on the age of the patient (longest delay in age group 20-60 years) and whether or not the patient lives in a nursing home (additional 2 days for patients from nursing home). The median LoS in hospital varies between 3 and 10.4 days, with the LoS increasing with age. The hospital LoS for patients that recover is shorter for patients living in a nursing home, but the time to death is longer for these patients. Over the course of the first wave, the LoS has decreased.


Subject(s)
Coronavirus Infections/mortality , Coronavirus Infections/therapy , Hospitalization/statistics & numerical data , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Time-to-Treatment/statistics & numerical data , Adult , Aged , Belgium/epidemiology , COVID-19 , Data Interpretation, Statistical , Humans , Length of Stay/statistics & numerical data , Middle Aged , Nursing Homes/statistics & numerical data , Pandemics , Treatment Outcome , Young Adult
17.
Contemp Clin Trials ; 99: 106189, 2020 12.
Article in English | MEDLINE | ID: covidwho-898554

ABSTRACT

Starting from historic reflections, the current SARS-CoV-2 induced COVID-19 pandemic is examined from various perspectives, in terms of what it implies for the implementation of non-pharmaceutical interventions, the modeling and monitoring of the epidemic, the development of early-warning systems, the study of mortality, prevalence estimation, diagnostic and serological testing, vaccine development, and ultimately clinical trials. Emphasis is placed on how the pandemic had led to unprecedented speed in methodological and clinical development, the pitfalls thereof, but also the opportunities that it engenders for national and international collaboration, and how it has simplified and sped up procedures. We also study the impact of the pandemic on clinical trials in other indications. We note that it has placed biostatistics, epidemiology, virology, infectiology, and vaccinology, and related fields in the spotlight in an unprecedented way, implying great opportunities, but also the need to communicate effectively, often amidst controversy.


Subject(s)
Biomedical Research/organization & administration , Biostatistics/methods , COVID-19/epidemiology , Epidemiologic Methods , Age Factors , Biomedical Research/standards , COVID-19/mortality , COVID-19 Testing/methods , COVID-19 Testing/standards , COVID-19 Vaccines , Cause of Death , Communicable Disease Control/organization & administration , Drug Development/organization & administration , Drug Industry/organization & administration , Endpoint Determination/standards , Europe , Health Communication/standards , Humans , Immunity, Herd/physiology , Models, Theoretical , Pandemics , Prevalence , Public Opinion , Randomized Controlled Trials as Topic/methods , Randomized Controlled Trials as Topic/standards , SARS-CoV-2 , Seasons , Sex Factors , Time Factors
18.
J Pediatr X ; 4: 100044, 2020.
Article in English | MEDLINE | ID: covidwho-737505

ABSTRACT

OBJECTIVE: To assess food insecurity during pediatric visits to federally qualified health centers (FQHCs) during the coronavirus disease-19 pandemic. STUDY DESIGN: Interviews using the validated American Academy of Pediatrics 2-question food insecurity screen were performed with 200 consecutive families presenting for pediatric care to 2 FQHC in Central Texas from April 14 to May 20, 2020, during the initial phase of the pandemic in Texas. Brief qualitative interviews were conducted to determine whether families found a worsening of food insecurity during the pandemic. RESULTS: Overall, 47% of families had a positive food insecurity screen. More than 90% of these were worrying about food running out and about 60% were positive for the question related to food not lasting. Among families with food insecurity, 94% indicated this had begun or worsened during the pandemic. Of the 115 families volunteering information about employment, 46% reported job loss during this time period. Both ethnicity (P < .001) and Special Supplementation Nutrition Program for Women, Infants and Children (WIC) participation (P = .03) were associated with greater levels of food insecurity. Among primarily Spanish-speaking families participating in the WIC program, 64% reported food insecurity. CONCLUSIONS: Approximately one-half of families receiving routine pediatric care at a FQHC during the coronavirus disease-19 pandemic reported food insecurity and this was associated with loss of jobs during the pandemic. Participation in the WIC program was not protective against food insecurity. Increased frequency of food insecurity was detected in Hispanic and Spanish-speaking families. Screening of families at an FQHC should be strongly considered as a part of routine pediatric care. Knowledge of community resources is important for providers to share with patients. (J Pediatr: X 2020;4:100044). TRIAL REGISTRATION: ClinicalTrials.gov: NCT04378595.

19.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.20.20157933

ABSTRACT

BackgroundIn response to the ongoing COVID-19 pandemic, several countries adopted measures of social distancing to a different degree. For many countries, after successfully curbing the initial wave, lockdown measures were gradually lifted. In Belgium, such relief started on May 4th with phase 1, followed by several subsequent phases over the next few weeks. MethodsWe analysed the expected impact of relaxing stringent lockdown measures taken according to the phased Belgian exit strategy. We developed a stochastic, data-informed, meta-population model that accounts for mixing and mobility of the age-structured population of Belgium. The model is calibrated to daily hospitalization data and serological data and is able to reproduce the outbreak at the national level. We consider different scenarios for relieving the lockdown, quantified in terms of relative reductions in pre-pandemic social mixing and mobility. We validate our assumptions by making comparisons with social contact data collected during and after the lockdown. ResultsOur model is able to successfully describe the initial wave of COVID-19 in Belgium and identifies interactions during leisure/other activities as pivotal in the exit strategy. Indeed, we find a smaller impact of school re-openings as compared to restarting leisure activities and re-openings of work places. We also assess the impact of case isolation of new (suspected) infections, and find that it allows re-establishing relatively more social interactions while still ensuring epidemic control. Scenarios predicting a second wave of hospitalizations were not observed, suggesting that the per-contact probability of infection has changed with respect to the pre-lockdown period. ConclusionsCommunity contacts are found to be most influential, followed by professional contacts and school contacts, respectively, for an impending second wave of COVID-19. Regular re-assessment is crucial to adjust to evolving behavioral changes that can affect epidemic diffusion. In addition to social distancing, sufficient capacity for extensive testing and contact tracing is essential for successful mitigation.

SELECTION OF CITATIONS
SEARCH DETAIL