Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
PLoS One ; 17(7): e0271324, 2022.
Article in English | MEDLINE | ID: covidwho-1938448

ABSTRACT

We developed a Coronavirus Disease 2019 (COVID-19) risk score to guide targeted RT-PCR testing in Qatar. The Qatar national COVID-19 testing database, encompassing a total of 2,688,232 RT-PCR tests conducted between February 5, 2020-January 27, 2021, was analyzed. Logistic regression analyses were implemented to derive the COVID-19 risk score, as a tool to identify those at highest risk of having the infection. Score cut-off was determined using the ROC curve based on maximum sum of sensitivity and specificity. The score's performance diagnostics were assessed. Logistic regression analysis identified age, sex, and nationality as significant predictors of infection and were included in the risk score. The ROC curve was generated and the area under the curve was estimated at 0.63 (95% CI: 0.63-0.63). The score had a sensitivity of 59.4% (95% CI: 59.1%-59.7%), specificity of 61.1% (95% CI: 61.1%-61.2%), a positive predictive value of 10.9% (95% CI: 10.8%-10.9%), and a negative predictive value of 94.9% (94.9%-95.0%). The concept and utility of a COVID-19 risk score were demonstrated in Qatar. Such a public health tool can have considerable utility in optimizing testing and suppressing infection transmission, while maximizing efficiency and use of available resources.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , Public Health , Qatar/epidemiology , ROC Curve , Retrospective Studies , Risk Factors , SARS-CoV-2/genetics , Sensitivity and Specificity
2.
J Glob Health ; 12: 05032, 2022 Jul 06.
Article in English | MEDLINE | ID: covidwho-1924590

ABSTRACT

Background: Understanding the disease severity associated with the Omicron variant of the SARS-CoV-2 virus is important in determining appropriate management strategies at the individual and population levels. We determined the severity of SARS-CoV-2 infection in persons infected with the Omicron vs the Delta variant. Methods: We identified individuals with SARS-CoV-2 infection with Delta and propensity-score matched controls with Omicron variant infection from the National COVID-19 Database in Qatar. We excluded temporary visitors to Qatar, those with a prior documented infection, those ≤18 years old, and those with <14 days of follow up after the index test positive date. We determined the rates of admission to the hospital, admission to intensive care unit, mechanical ventilation, or death among those infected with the Delta or Omicron variants. Results: Among 9763 cases infected with the Delta variant and 11 310 cases infected with the Omicron variant, we identified 3926 propensity-score matched pairs. Among 3926 Delta infected, 3259 (83.0%) had mild, 633 (16.1%) had moderate and 34 (0.9%) had severe/critical disease. Among 3926 Omicron infected, 3866 (98.5%) had mild, 59 (1.5%) had moderate, and only 1 had severe/critical disease (overall P < 0.001). Factors associated with less moderate or severe/critical disease included infection with Omicron variant (aOR = 0.06; confidence interval (CI) = 0.05-0.09) and vaccination including a booster (aOR = 0.30; 95% CI = 0.09-0.99). Conclusions: Omicron variant infection is associated with significantly lower severity of disease compared with the Delta variant. Vaccination continues to offer strong protection against severe/critical disease.


Subject(s)
COVID-19 , Adolescent , Humans , Qatar/epidemiology , SARS-CoV-2/genetics , Severity of Illness Index
3.
Lancet HIV ; 9(7): e506-e516, 2022 07.
Article in English | MEDLINE | ID: covidwho-1907940

ABSTRACT

The Middle East and north Africa is one of only two world regions where HIV incidence is on the rise, with most infections occurring among key populations: people who inject drugs, men who have sex with men, and female sex workers. In this Review, we show a trend of increasing HIV prevalence among the three key populations in the Middle East and north Africa. Although the epidemic continues at a low level in some countries or localities within a country, there is evidence for concentrated epidemics, with sustained transmission at considerable HIV prevalence among people who inject drugs and men who have sex with men in over half of countries in the region with data, and among female sex workers in several countries. Most epidemics emerged around 2003 or thereafter. The status of the epidemic among key populations remains unknown in several countries due to persistent data gaps. The HIV response in Middle East and north Africa remains far below global targets for prevention, testing, and treatment. It is hindered by underfunding, poor surveillance, and stigma, all of which are compounded by widespread conflict and humanitarian crises, and most recently, the advent of COVID-19. Investment is needed to put the region on track towards the target of eliminating HIV/AIDS as a global health threat by 2030. Reaching this target will not be possible without tailoring the response to the needs of key populations, while addressing, to the extent possible, the complex structural and operational barriers to success.


Subject(s)
COVID-19 , HIV Infections , Sex Workers , Sexual and Gender Minorities , Africa, Northern/epidemiology , Female , HIV Infections/epidemiology , HIV Infections/prevention & control , Homosexuality, Male , Humans , Male , Middle East/epidemiology
4.
Environ Technol Innov ; 27: 102775, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1907017

ABSTRACT

The apparent uncertainty associated with shedding patterns, environmental impacts, and sample processing strategies have greatly influenced the variability of SARS-CoV-2 concentrations in wastewater. This study evaluates the use of a new normalization approach using human RNase P for the logic estimation of SARS-CoV-2 viral load in wastewater. SARS-CoV-2 variants outbreak was monitored during the circulating wave between February and August 2021. Sewage samples were collected from five major wastewater treatment plants and subsequently analyzed to determine the viral loads in the wastewater. SARS-CoV-2 was detected in all the samples where the wastewater Ct values exhibited a similar trend as the reported number of new daily positive cases in the country. The infected population number was estimated using a mathematical model that compensated for RNA decay due to wastewater temperature and sewer residence time, and which indicated that the number of positive cases circulating in the population declined from 765,729 ± 142,080 to 2,303 ± 464 during the sampling period. Genomic analyses of SARS-CoV-2 of thirty wastewater samples collected between March 2021 and April 2021 revealed that alpha (B.1.1.7) and beta (B.1.351) were among the dominant variants of concern (VOC) in Qatar. The findings of this study imply that the normalization of data allows a more realistic assessment of incidence trends within the population.

5.
N Engl J Med ; 387(1): 21-34, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1890356

ABSTRACT

BACKGROUND: The protection conferred by natural immunity, vaccination, and both against symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with the BA.1 or BA.2 sublineages of the omicron (B.1.1.529) variant is unclear. METHODS: We conducted a national, matched, test-negative, case-control study in Qatar from December 23, 2021, through February 21, 2022, to evaluate the effectiveness of vaccination with BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna), natural immunity due to previous infection with variants other than omicron, and hybrid immunity (previous infection and vaccination) against symptomatic omicron infection and against severe, critical, or fatal coronavirus disease 2019 (Covid-19). RESULTS: The effectiveness of previous infection alone against symptomatic BA.2 infection was 46.1% (95% confidence interval [CI], 39.5 to 51.9). The effectiveness of vaccination with two doses of BNT162b2 and no previous infection was negligible (-1.1%; 95% CI, -7.1 to 4.6), but nearly all persons had received their second dose more than 6 months earlier. The effectiveness of three doses of BNT162b2 and no previous infection was 52.2% (95% CI, 48.1 to 55.9). The effectiveness of previous infection and two doses of BNT162b2 was 55.1% (95% CI, 50.9 to 58.9), and the effectiveness of previous infection and three doses of BNT162b2 was 77.3% (95% CI, 72.4 to 81.4). Previous infection alone, BNT162b2 vaccination alone, and hybrid immunity all showed strong effectiveness (>70%) against severe, critical, or fatal Covid-19 due to BA.2 infection. Similar results were observed in analyses of effectiveness against BA.1 infection and of vaccination with mRNA-1273. CONCLUSIONS: No discernable differences in protection against symptomatic BA.1 and BA.2 infection were seen with previous infection, vaccination, and hybrid immunity. Vaccination enhanced protection among persons who had had a previous infection. Hybrid immunity resulting from previous infection and recent booster vaccination conferred the strongest protection. (Funded by Weill Cornell Medicine-Qatar and others.).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 , Immunity, Innate , Immunization , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/therapeutic use , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Case-Control Studies , Humans , Immunity, Innate/immunology , Immunization, Secondary , Recurrence , SARS-CoV-2/immunology , Vaccination
6.
Clin Infect Dis ; 2022 Apr 11.
Article in English | MEDLINE | ID: covidwho-1886383

ABSTRACT

BACKGROUND: There are limited data assessing COVID-19 disease severity in children/adolescents infected with the Omicron variant. METHODS: We identified children and adolescents <18 years with SARS-CoV-2 infection with Delta and propensity-score matched controls with Omicron variant infection from the National COVID-19 Database in Qatar. Primary outcome was disease severity, determined by hospital admission, admission to ICU, or mechanical ventilation within 14 days of diagnosis, or death within 28 days. RESULTS: Among 1,735 cases with Delta variant infection between June 1 and November 6, 2021 and 32 635 cases with Omicron variant infection between January 1 and January 15, 2022 who did not have prior infection and were not vaccinated, we identified 985 propensity-score matched pairs. Among Delta infected, 84.2% had mild, 15.7% had moderate, and 0.1% had severe/critical disease. Among Omicron infected, 97.8% had mild, 2.2% had moderate, and none had severe/critical disease (P < .001). Omicron variant infection (vs. Delta) was associated with significantly lower odds of moderate or severe/critical disease (adjusted odds ratio, 0.12; 95% CI 0.07-0.18). Those aged 6-11, and 12-<18 years had lower odds of developing moderate or severe/critical disease compared with those younger than six years (aOR, 95% CI 0.47; 0.33-0.66 for 6-11 year old; aOR 0.45, 95% CI 0.21-0.94 for 12-<18 years old). CONCLUSIONS: Omicron variant infection in children/adolescents is associated with less severe disease than Delta variant infection as measured by hospitalization rates and need for ICU care or mechanical ventilation. Those 6 to <18 years also have less severe disease than those <6 years old.

7.
J Travel Med ; 2022 May 27.
Article in English | MEDLINE | ID: covidwho-1873966

ABSTRACT

Compared to BA.1, BA.2 was associated with lower RT-qPCR cycle threshold (Ct) value-3.53 fewer cycles (95% CI: 3.46-3.60), signifying higher infectiousness. This may reflect higher viral load and/or longer duration of infection for BA.2. Natural immunity from previous infection and booster vaccination were associated with less infectious breakthrough infections.

9.
Nat Commun ; 13(1): 3082, 2022 06 02.
Article in English | MEDLINE | ID: covidwho-1873502

ABSTRACT

SARS-CoV-2 Omicron BA.1 and BA.2 subvariants are genetically divergent. We conducted a matched, test-negative, case-control study to estimate duration of protection of the second and third/booster doses of mRNA COVID-19 vaccines against BA.1 and BA.2 infections in Qatar. BNT162b2 effectiveness was highest at 46.6% (95% CI: 33.4-57.2%) against symptomatic BA.1 and at 51.7% (95% CI: 43.2-58.9%) against symptomatic BA.2 infections in the first three months after the second dose, but declined to ~10% or below thereafter. Effectiveness rebounded to 59.9% (95% CI: 51.2-67.0%) and 43.7% (95% CI: 36.5-50.0%), respectively, in the first month after the booster dose, before declining again. Effectiveness against COVID-19 hospitalization and death was 70-80% after the second dose and >90% after the booster dose. mRNA-1273 vaccine protection showed similar patterns. mRNA vaccines provide comparable, moderate, and short-lived protection against symptomatic BA.1 and BA.2 Omicron infections, but strong and durable protection against COVID-19 hospitalization and death.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , Humans , Qatar/epidemiology , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
10.
BMC Infect Dis ; 22(1): 458, 2022 May 13.
Article in English | MEDLINE | ID: covidwho-1846800

ABSTRACT

BACKGROUND: Prospective observational data show that infected persons with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain polymerase chain reaction (PCR) positive for a prolonged duration, and that detectable antibodies develop slowly with time. We aimed to analyze how these effects can bias key epidemiological metrics used to track and monitor SARS-CoV-2 epidemics. METHODS: An age-structured mathematical model was constructed to simulate progression of SARS-CoV-2 epidemics in populations. PCR testing to diagnose infection and cross-sectional surveys to measure seroprevalence were also simulated. Analyses were conducted on simulated outcomes assuming a natural epidemic time course and an epidemic in presence of interventions. RESULTS: The prolonged PCR positivity biased the epidemiological measures. There was a lag of 10 days between the true epidemic peak and the actually-observed peak. Prior to epidemic peak, PCR positivity rate was twofold higher than that based only on current active infection, and half of those tested positive by PCR were in the prolonged PCR positivity stage after infection clearance. Post epidemic peak, PCR positivity rate poorly predicted true trend in active infection. Meanwhile, the prolonged PCR positivity did not appreciably bias estimation of the basic reproduction number R0. The time delay in development of detectable antibodies biased measured seroprevalence. The actually-observed seroprevalence substantially underestimated true prevalence of ever infection, with the underestimation being most pronounced around epidemic peak. CONCLUSIONS: Caution is warranted in interpreting PCR and serological testing data, and any drawn inferences need to factor the effects of the investigated biases for an accurate assessment of epidemic dynamics.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Benchmarking , Bias , COVID-19/diagnosis , COVID-19/epidemiology , Cross-Sectional Studies , Humans , Polymerase Chain Reaction , SARS-CoV-2/genetics , Seroepidemiologic Studies
11.
Vaccine ; 40(26): 3516-3527, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1815247

ABSTRACT

Vaccine effectiveness is lower and wanes faster against infection and symptomatic disease caused by the omicron variant of SARS-CoV-2 than was observed with previous variants. Vaccine effectiveness against severe omicron disease, on average, is higher, but has shown variability, including rapid apparent waning, in some studies. Assessing vaccine effectiveness against omicron severe disease using hospital admission as a measure of severe disease has become more challenging because of omicron's attenuated intrinsic severity and its high prevalence of infection. Many hospital admissions likely occur among people with incidental omicron infection or among those with infection-induced exacerbation of chronic medical conditions. To address this challenge, the World Health Organization held a virtual meeting on March 15, 2022, to review evidence from several studies that assessed Covid-19 vaccine effectiveness against severe omicron disease using several outcome definitions. Data was shown from studies in South Africa, the United States, the United Kingdom and Qatar. Several approaches were proposed that better characterize vaccine protection against severe Covid-19 disease caused by the omicron variant than using hospitalization of omicron-infected persons to define severe disease. Using more specific definitions for severe respiratory Covid-19 disease, such as indicators of respiratory distress (e.g. oxygen requirement, mechanical ventilation, and ICU admission), showed higher vaccine effectiveness than against hospital admission. Second, vaccine effectiveness against progression from omicron infection to hospitalization, or severe disease, also showed higher vaccine protection. These approaches might better characterize vaccine performance against severe Covid-19 disease caused by omicron, as well as future variants that evade humoral immunity, than using hospitalization with omicron infection as an indicator of severe disease.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Humans , United States , Vaccine Efficacy , World Health Organization
12.
Epidemics ; 39: 100567, 2022 06.
Article in English | MEDLINE | ID: covidwho-1796867

ABSTRACT

Different COVID-19 treatment candidates are under development, and some are becoming available including two promising drugs from Merck and Pfizer. This study provides conceptual frameworks for the effects of three types of treatments, both therapeutic and prophylactic, and to investigate their population-level impact, to inform drug development, licensure, decision-making, and implementation. Different drug efficacies were assessed using an age-structured mathematical model describing SARS-CoV-2 transmission and disease progression, with application to the United States as an illustrative example. Severe and critical infection treatment reduces progression to COVID-19 severe and critical disease and death with small number of treatments needed to avert one disease or death. Post-exposure prophylaxis treatment had a large impact on flattening the epidemic curve, with large reductions in infection, disease, and death, but the impact was strongly age dependent. Pre-exposure prophylaxis treatment had the best impact and effectiveness, with immense reductions in infection, disease, and death, driven by the robust control of infection transmission. Effectiveness of both pre-exposure and post-exposure prophylaxis treatments was disproportionally larger when a larger segment of the population was targeted than a specific age group. Additional downstream potential effects of treatment, beyond the primary outcome, enhance the population-level impact of both treatments. COVID-19 treatments are an important modality in controlling SARS-CoV-2 disease burden. Different types of treatment act synergistically for a larger impact, for these treatments and vaccination.


Subject(s)
COVID-19 , Pre-Exposure Prophylaxis , COVID-19/drug therapy , COVID-19/epidemiology , Humans , SARS-CoV-2 , United States/epidemiology
13.
Lancet ; 399(10328): 924-944, 2022 03 05.
Article in English | MEDLINE | ID: covidwho-1768606

ABSTRACT

BACKGROUND: Knowing whether COVID-19 vaccine effectiveness wanes is crucial for informing vaccine policy, such as the need for and timing of booster doses. We aimed to systematically review the evidence for the duration of protection of COVID-19 vaccines against various clinical outcomes, and to assess changes in the rates of breakthrough infection caused by the delta variant with increasing time since vaccination. METHODS: This study was designed as a systematic review and meta-regression. We did a systematic review of preprint and peer-reviewed published article databases from June 17, 2021, to Dec 2, 2021. Randomised controlled trials of COVID-19 vaccine efficacy and observational studies of COVID-19 vaccine effectiveness were eligible. Studies with vaccine efficacy or effectiveness estimates at discrete time intervals of people who had received full vaccination and that met predefined screening criteria underwent full-text review. We used random-effects meta-regression to estimate the average change in vaccine efficacy or effectiveness 1-6 months after full vaccination. FINDINGS: Of 13 744 studies screened, 310 underwent full-text review, and 18 studies were included (all studies were carried out before the omicron variant began to circulate widely). Risk of bias, established using the risk of bias 2 tool for randomised controlled trials or the risk of bias in non-randomised studies of interventions tool was low for three studies, moderate for eight studies, and serious for seven studies. We included 78 vaccine-specific vaccine efficacy or effectiveness evaluations (Pfizer-BioNTech-Comirnaty, n=38; Moderna-mRNA-1273, n=23; Janssen-Ad26.COV2.S, n=9; and AstraZeneca-Vaxzevria, n=8). On average, vaccine efficacy or effectiveness against SARS-CoV-2 infection decreased from 1 month to 6 months after full vaccination by 21·0 percentage points (95% CI 13·9-29·8) among people of all ages and 20·7 percentage points (10·2-36·6) among older people (as defined by each study, who were at least 50 years old). For symptomatic COVID-19 disease, vaccine efficacy or effectiveness decreased by 24·9 percentage points (95% CI 13·4-41·6) in people of all ages and 32·0 percentage points (11·0-69·0) in older people. For severe COVID-19 disease, vaccine efficacy or effectiveness decreased by 10·0 percentage points (95% CI 6·1-15·4) in people of all ages and 9·5 percentage points (5·7-14·6) in older people. Most (81%) vaccine efficacy or effectiveness estimates against severe disease remained greater than 70% over time. INTERPRETATION: COVID-19 vaccine efficacy or effectiveness against severe disease remained high, although it did decrease somewhat by 6 months after full vaccination. By contrast, vaccine efficacy or effectiveness against infection and symptomatic disease decreased approximately 20-30 percentage points by 6 months. The decrease in vaccine efficacy or effectiveness is likely caused by, at least in part, waning immunity, although an effect of bias cannot be ruled out. Evaluating vaccine efficacy or effectiveness beyond 6 months will be crucial for updating COVID-19 vaccine policy. FUNDING: Coalition for Epidemic Preparedness Innovations.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Immunization Schedule , Immunization, Secondary , /therapeutic use , Humans , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Time Factors
14.
Int J Infect Dis ; 118: 132-137, 2022 May.
Article in English | MEDLINE | ID: covidwho-1757407

ABSTRACT

BACKGROUND: A vast majority of the commercially available lateral flow immunoassay (LFIA) is used to detect SARS-CoV-2 antibodies qualitatively. Recently, a novel fluorescence-based lateral flow immunoassay (LFIA) test was developed for quantitative measurement of the total binding antibody units (BAUs) (BAU/mL) against SARS-CoV-2 spike protein receptor-binding domain (S-RBD). AIM: This study aimed to evaluate the performance of the fluorescence LFIA FinecareTM 2019-nCoV S-RBD test along with its reader (Model No.: FS-113). METHODS: Plasma from 150 reverse trancriptase-PCR (RT-PCR)-confirmed positive individuals and 100 prepandemic samples were tested by FincareTM to access sensitivity and specificity. For qualitative and quantitative validation of the FinCareTM measurements, BAU/mL results of FinCareTM were compared with results of 2 reference assays: the surrogate virus-neutralizing test (sVNT, GenScript Biotech, USA) and the VIDAS®3 automated assay (BioMérieux, France). RESULTS: FinecareTM showed 92% sensitivity and 100% specificity compared with PCR. Cohen's Kappa statistic denoted moderate and excellent agreement with sVNT and VIDAS®3, with values being 0.557 (95% CI: 0.32-0.78) and 0.731 (95% CI: 0.51-0.95), respectively. A strong correlation was observed between FinecareTM/sVNT (r = 0.7, p < 0.0001) and FinecareTM/VIDAS®3 (r = 0.8, p < 0.0001). CONCLUSION: FinecareTM is a reliable assay and can be used as a surrogate to assess binding and neutralizing antibody response after infection or vaccination, particularly in none or small laboratory settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , Humans , Immunoassay/methods , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus
15.
N Engl J Med ; 386(19): 1804-1816, 2022 05 12.
Article in English | MEDLINE | ID: covidwho-1735349

ABSTRACT

BACKGROUND: Waning of vaccine protection against coronavirus disease 2019 (Covid-19) and the emergence of the omicron (or B.1.1.529) variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have led to expedited efforts to scale up booster vaccination. Protection conferred by booster doses of the BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines in Qatar, as compared with protection conferred by the two-dose primary series, is unclear. METHODS: We conducted two matched retrospective cohort studies to assess the effectiveness of booster vaccination, as compared with that of a two-dose primary series alone, against symptomatic SARS-CoV-2 infection and Covid-19-related hospitalization and death during a large wave of omicron infections from December 19, 2021, through January 26, 2022. The association of booster status with infection was estimated with the use of Cox proportional-hazards regression models. RESULTS: In a population of 2,239,193 persons who had received at least two doses of BNT162b2 or mRNA-1273 vaccine, those who had also received a booster were matched with persons who had not received a booster. Among the BNT162b2-vaccinated persons, the cumulative incidence of symptomatic omicron infection was 2.4% (95% confidence interval [CI], 2.3 to 2.5) in the booster cohort and 4.5% (95% CI, 4.3 to 4.6) in the nonbooster cohort after 35 days of follow-up. Booster effectiveness against symptomatic omicron infection, as compared with that of the primary series, was 49.4% (95% CI, 47.1 to 51.6). Booster effectiveness against Covid-19-related hospitalization and death due to omicron infection, as compared with the primary series, was 76.5% (95% CI, 55.9 to 87.5). BNT162b2 booster effectiveness against symptomatic infection with the delta (or B.1.617.2) variant, as compared with the primary series, was 86.1% (95% CI, 67.3 to 94.1). Among the mRNA-1273-vaccinated persons, the cumulative incidence of symptomatic omicron infection was 1.0% (95% CI, 0.9 to 1.2) in the booster cohort and 1.9% (95% CI, 1.8 to 2.1) in the nonbooster cohort after 35 days; booster effectiveness against symptomatic omicron infection, as compared with the primary series, was 47.3% (95% CI, 40.7 to 53.3). Few severe Covid-19 cases were noted in the mRNA-1273-vaccinated cohorts. CONCLUSIONS: The messenger RNA (mRNA) boosters were highly effective against symptomatic delta infection, but they were less effective against symptomatic omicron infection. However, with both variants, mRNA boosters led to strong protection against Covid-19-related hospitalization and death. (Funded by Weill Cornell Medicine-Qatar and others.).


Subject(s)
/immunology , COVID-19 , COVID-19/epidemiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines , Cohort Studies , Humans , Immunization, Secondary , Immunogenicity, Vaccine , Qatar/epidemiology , RNA, Messenger , Retrospective Studies , SARS-CoV-2 , Vaccines, Synthetic
16.
Glob Epidemiol ; 3: 100068, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1729789

ABSTRACT

We aimed to estimate, albeit crudely and provisionally, national, regional, and global proportions of respective populations that have been infected with SARS-CoV-2 in the first year after the introduction of this virus into human circulation, and to assess infection morbidity and mortality rates, factoring both documented and undocumented infections. The estimates were generated by applying mathematical models to 159 countries and territories. The percentage of the world's population that has been infected as of 31 December 2020 was estimated at 12.56% (95% CI: 11.17-14.05%). It was lowest in the Western Pacific Region at 0.66% (95% CI: 0.59-0.75%) and highest in the Americas at 41.92% (95% CI: 37.95-46.09%). The global infection fatality rate was 10.73 (95% CI: 10.21-11.29) per 10,000 infections. Globally per 1000 infections, the infection acute-care bed hospitalization rate was 19.22 (95% CI: 18.73-19.51), the infection ICU bed hospitalization rate was 4.14 (95% CI: 4.10-4.18). If left unchecked with no vaccination and no other public health interventions, and assuming circulation of only wild-type variants and no variants of concern, the pandemic would eventually cause 8.18 million deaths (95% CI: 7.30-9.18), 163.67 million acute-care hospitalizations (95% CI: 148.12-179.51), and 33.01 million ICU hospitalizations (95% CI: 30.52-35.70), by the time the herd immunity threshold is reached at 60-70% infection exposure. The global population remained far below the herd immunity threshold by end of 2020. Global epidemiology reveals immense regional variation in infection exposure and morbidity and mortality rates.

17.
Lancet ; 399(10327): 771-773, 2022 02 26.
Article in English | MEDLINE | ID: covidwho-1707951
18.
J Glob Health ; 12: 05004, 2022.
Article in English | MEDLINE | ID: covidwho-1687376

ABSTRACT

BACKGROUND: The effective reproduction number, Rt , is a tool to track and understand pandemic dynamics. This investigation of Rt estimations was conducted to guide the national COVID-19 response in Qatar, from the onset of the pandemic until August 18, 2021. METHODS: Real-time "empirical" Rt Empirical was estimated using five methods, including the Robert Koch Institute, Cislaghi, Systrom-Bettencourt and Ribeiro, Wallinga and Teunis, and Cori et al. methods. Rt was also estimated using a transmission dynamics model (Rt Model-based ). Uncertainty and sensitivity analyses were conducted. Correlations between different Rt estimates were assessed by calculating correlation coefficients, and agreements between these estimates were assessed through Bland-Altman plots. RESULTS: Rt Empirical captured the evolution of the pandemic through three waves, public health response landmarks, effects of major social events, transient fluctuations coinciding with significant clusters of infection, and introduction and expansion of the Alpha (B.1.1.7) variant. The various estimation methods produced consistent and overall comparable Rt Empirical estimates with generally large correlation coefficients. The Wallinga and Teunis method was the fastest at detecting changes in pandemic dynamics. Rt Empirical estimates were consistent whether using time series of symptomatic PCR-confirmed cases, all PCR-confirmed cases, acute-care hospital admissions, or ICU-care hospital admissions, to proxy trends in true infection incidence. Rt Model-based correlated strongly with Rt Empirical and provided an average Rt Empirical . CONCLUSIONS: Rt estimations were robust and generated consistent results regardless of the data source or the method of estimation. Findings affirmed an influential role for Rt estimations in guiding national responses to the COVID-19 pandemic, even in resource-limited settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Basic Reproduction Number , Humans , Pandemics , Qatar/epidemiology
20.
Vaccines (Basel) ; 10(2)2022 Jan 25.
Article in English | MEDLINE | ID: covidwho-1677717

ABSTRACT

The currently authorized mRNA COVID-19 vaccines, Pfizer-BNT162b2 and Moderna-mRNA-1273, offer great promise for reducing the spread of the COVID-19 by generating protective immunity against SARS-CoV-2. Recently, it was shown that the magnitude of the neutralizing antibody (NAbs) response correlates with the degree of protection. However, the difference between the immune response in naïve mRNA-vaccinated and previously infected (PI) individuals is not well studied. We investigated the level of NAbs in naïve and PI individuals after 1 to 26 (median = 6) weeks of the second dose of BNT162b2 or mRNA-1273 vaccination. The naïve mRNA-1273 vaccinated group (n = 68) generated significantly higher (~2-fold, p ≤ 0.001) NAbs than the naïve BNT162b2 (n = 358) group. The P -vaccinated group (n = 42) generated significantly higher (~3-fold; p ≤ 0.001) NAbs levels than the naïve-BNT162b2 (n = 426). Additionally, the older age groups produced a significantly higher levels of antibodies than the young age group (<30) (p = 0.0007). Our results showed that mRNA-1273 generated a higher NAbs response than the BNT162b2 vaccine, and the PI group generated the highest level of NAbs response regardless of the type of vaccine.

SELECTION OF CITATIONS
SEARCH DETAIL