ABSTRACT
BACKGROUND: COVID-19 is characterized by a heterogeneous clinical presentation, ranging from mild symptoms to severe courses of disease. 9-20% of hospitalized patients with severe lung disease die from COVID-19 and a substantial number of survivors develop long-COVID. Our objective was to provide comprehensive insights into the pathophysiology of severe COVID-19 and to identify liquid biomarkers for disease severity and therapy response. METHODS: We studied a total of 85 lungs (n = 31 COVID autopsy samples; n = 7 influenza A autopsy samples; n = 18 interstitial lung disease explants; n = 24 healthy controls) using the highest resolution Synchrotron radiation-based hierarchical phase-contrast tomography, scanning electron microscopy of microvascular corrosion casts, immunohistochemistry, matrix-assisted laser desorption ionization mass spectrometry imaging, and analysis of mRNA expression and biological pathways. Plasma samples from all disease groups were used for liquid biomarker determination using ELISA. The anatomic/molecular data were analyzed as a function of patients' hospitalization time. FINDINGS: The observed patchy/mosaic appearance of COVID-19 in conventional lung imaging resulted from microvascular occlusion and secondary lobular ischemia. The length of hospitalization was associated with increased intussusceptive angiogenesis. This was associated with enhanced angiogenic, and fibrotic gene expression demonstrated by molecular profiling and metabolomic analysis. Increased plasma fibrosis markers correlated with their pulmonary tissue transcript levels and predicted disease severity. Plasma analysis confirmed distinct fibrosis biomarkers (TSP2, GDF15, IGFBP7, Pro-C3) that predicted the fatal trajectory in COVID-19. INTERPRETATION: Pulmonary severe COVID-19 is a consequence of secondary lobular microischemia and fibrotic remodelling, resulting in a distinctive form of fibrotic interstitial lung disease that contributes to long-COVID. FUNDING: This project was made possible by a number of funders. The full list can be found within the Declaration of interests / Acknowledgements section at the end of the manuscript.
Subject(s)
COVID-19 , Lung Diseases, Interstitial , Humans , Lung/diagnostic imaging , Lung/pathology , Lung Diseases, Interstitial/pathology , Fibrosis , Biomarkers/analysis , Ischemia/pathology , Post-Acute COVID-19 SyndromeABSTRACT
A wide range of cardiac symptoms have been observed in COVID-19 patients, often significantly influencing the clinical outcome. While the pathophysiology of pulmonary COVID-19 manifestation has been substantially unraveled, the underlying pathomechanisms of cardiac involvement in COVID-19 are largely unknown. In this multicentre study, we performed a comprehensive analysis of heart samples from 24 autopsies with confirmed SARS-CoV-2 infection and compared them to samples of age-matched Influenza H1N1 A (n = 16), lymphocytic non-influenza myocarditis cases (n = 8), and non-inflamed heart tissue (n = 9). We employed conventional histopathology, multiplexed immunohistochemistry (MPX), microvascular corrosion casting, scanning electron microscopy, X-ray phase-contrast tomography using synchrotron radiation, and direct multiplexed measurements of gene expression, to assess morphological and molecular changes holistically. Based on histopathology, none of the COVID-19 samples fulfilled the established diagnostic criteria of viral myocarditis. However, quantification via MPX showed a significant increase in perivascular CD11b/TIE2 + -macrophages in COVID-19 over time, which was not observed in influenza or non-SARS-CoV-2 viral myocarditis patients. Ultrastructurally, a significant increase in intussusceptive angiogenesis as well as multifocal thrombi, inapparent in conventional morphological analysis, could be demonstrated. In line with this, on a molecular level, COVID-19 hearts displayed a distinct expression pattern of genes primarily coding for factors involved in angiogenesis and epithelial-mesenchymal transition (EMT), changes not seen in any of the other patient groups. We conclude that cardiac involvement in COVID-19 is an angiocentric macrophage-driven inflammatory process, distinct from classical anti-viral inflammatory responses, and substantially underappreciated by conventional histopathologic analysis. For the first time, we have observed intussusceptive angiogenesis in cardiac tissue, which we previously identified as the linchpin of vascular remodeling in COVID-19 pneumonia, as a pathognomic sign in affected hearts. Moreover, we identified CD11b + /TIE2 + macrophages as the drivers of intussusceptive angiogenesis and set forward a putative model for the molecular regulation of vascular alterations.
Subject(s)
COVID-19 , Pulmonary Fibrosis , Humans , Post-Acute COVID-19 Syndrome , Pulmonary Fibrosis/etiologyABSTRACT
BACKGROUND: The COVID-19 pandemic is the third worldwide coronavirus-associated disease outbreak in the past 20 years. Lung involvement, with acute respiratory distress syndrome (ARDS) in severe cases, is the main clinical feature of this disease; the cardiovascular system, the central nervous system, and the gastrointestinal tract can also be affected. The pathophysiology of both pulmonary and extrapulmonary organ damage was almost completely unknown when the pandemic began. METHODS: This review is based on pertinent publications retrieved by a selective search concerning the structural changes and pathophysiology of COVID-19, with a focus on imaging techniques. RESULTS: Immunohistochemical, electron-microscopic and molecular pathological analyses of tissues obtained by autopsy have improved our understanding of COVID-19 pathophysiology, including molecular regulatory mechanisms. Intussusceptive angiogenesis (IA) has been found to be a prominent pattern of damage in the affected organs of COVID-19 patients. In IA, an existing vessel changes by invagination of the endothelium and formation of an intraluminal septum, ultimately giving rise to two new lumina. This alters hemodynamics within the vessel, leading to a loss of laminar flow and its replacement by turbulent, inhomogeneous flow. IA, which arises because of ischemia due to thrombosis, is itself a risk factor for the generation of further microthrombi; these have been detected in the lungs, heart, liver, kidneys, brain, and placenta of COVID-19 patients. CONCLUSION: Studies of autopsy material from various tissues of COVID-19 patients have revealed ultrastructural evidence of altered microvascularity, IA, and multifocal thrombi. These changes may contribute to the pathophysiology of post-acute interstitial fibrotic organ changes as well as to the clinical picture of long COVID.
Subject(s)
COVID-19 , Thrombosis , COVID-19/complications , Humans , Lung/diagnostic imaging , Pandemics , SARS-CoV-2 , Post-Acute COVID-19 SyndromeSubject(s)
COVID-19 , Pneumonia , Humans , Lung , Respiratory Dead Space , Respiratory Physiological PhenomenaABSTRACT
Objet L’architecture capillaire et la circulation bronchique habituelle semble sensiblement modifiée dans le cadre des pneumopathies à SARS-CoV-2, associés à des thromboses multiples [1], [2]. L’imagerie en contraste de phase par source synchrotron (sPCI) permet d’étudier précisément l’ensemble des tissus organiques à une résolution microscopique et de façon non destructive. Le but de cette étude était de comparer l’anatomie vasculaire bronchique entre un poumon sain et un poumon de patients infectés par la COVID-19. Méthodes Trois poumons témoins ont été prélevés au Laboratoire d’Anatomie Des Alpes Françaises puis comparés à trois poumons de patients infectés par le SARS-CoV-2, provenant de la banque d’organe de l’Université Witten/Herdecke (Allemagne). Après préparation, les poumons ont été imagés au Synchrotron Européen de Grenoble à 26μm, 6μm et 2μm sans injection de produit de contraste [3]. La vascularisation a été étudiée sur les coupes tomodensitométriques 2D et sur les reconstructions tridimensionnelles, puis sur coupes histologiques et via des injections-corrosions. Le projet a été financé par la Chan Zuckerberg Initiative. Résultats La circulation bronchique, qui provient de l’aorte thoracique et des artères intercostales, est modifiée par le processus inflammatoire et hypoxique. L’étude de l’anatomie microscopique bronchique en sPCI a permis d’établir la présence de nombreuses d’anastomoses de moins de 50μm entre la circulation bronchique et l’artère lobulaire dans les poumons de patients infectés par la COVID-19, entraînant un shunt doit-gauche intra-pulmonaire. Par ailleurs, une angiogenèse anarchique majeure a été détectée au niveau des plexus alvéolaires des zones atteintes par l’infection, au dépend des artères intra-lobulaires, par rapport aux poumons témoins. Conclusion L’imagerie sPCI réalisée a permis la première visualisation tridimensionnelle d’un shunt bronchio-pulmonaire dans la COVID-19 ainsi que les phénomènes de néovascularisations excessives associés.
ABSTRACT
The ability to treat severe viral infections is limited by our understanding of the mechanisms behind virus-induced immunopathology. While the role of type I interferons (IFNs) in early control of viral replication is clear, less is known about how IFNs can regulate the development of immunopathology and affect disease outcomes. Here, we report that absence of type I IFN receptor (IFNAR) is associated with extensive immunopathology following mucosal viral infection. This pathology occurred independent of viral load or type II immunity but required the presence of macrophages and IL-6. The depletion of macrophages and inhibition of IL-6 signaling significantly abrogated immunopathology. Tissue destruction was mediated by macrophage-derived matrix metalloproteinases (MMPs), as MMP inhibition by doxycycline and Ro 28-2653 reduced the severity of tissue pathology. Analysis of post-mortem COVID-19 patient lungs also displayed significant upregulation of the expression of MMPs and accumulation of macrophages. Overall, we demonstrate that IFNs inhibit macrophage-mediated MMP production to prevent virus-induced immunopathology and uncover MMPs as a therapeutic target towards viral infections.
Subject(s)
COVID-19 , Interferon Type I , Orthomyxoviridae Infections , Humans , Interleukin-6/metabolism , Macrophages/metabolism , ProteolysisABSTRACT
COVID-19 has been associated with a range of illness severity-from minimal symptoms to life-threatening multisystem organ failure. The severe forms of COVID-19 appear to be associated with an angiocentric or vascular phase of the disease. In studying autopsy patients succumbing to COVID-19, we found alveolar capillary microthrombi were 9 times more common in COVID-19 than in comparable patients with influenza. Corrosion casting of the COVID-19 microcirculation has revealed microvascular distortion, enhanced bronchial circulation, and striking increases in intussusceptive angiogenesis. In patients with severe COVID-19, endothelial cells commonly demonstrate significant ultrastructural injury. High-resolution imaging suggests that microcirculation perturbations are linked to ischemic changes in microanatomic compartments of the lung (secondary lobules). NanoString profiling of these regions has confirmed a transcriptional signature compatible with microischemia. We conclude that irreversible tissue ischemia provides an explanation for the cystic and fibrotic changes associated with long-haul COVID-19 symptoms.
Subject(s)
COVID-19 , Endothelial Cells , Ischemia , Microcirculation , Neovascularization, Pathologic , COVID-19/complications , COVID-19/pathology , COVID-19/physiopathology , Corrosion Casting , Endothelial Cells/pathology , Endothelial Cells/ultrastructure , Humans , Ischemia/complications , Neovascularization, Pathologic/complications , Post-Acute COVID-19 SyndromeABSTRACT
(1) Background: In COVID-19 survivors there is an increased prevalence of pulmonary fibrosis of which the underlying molecular mechanisms are poorly understood; (2) Methods: In this multicentric study, n = 12 patients who succumbed to COVID-19 due to progressive respiratory failure were assigned to an early and late group (death within ≤7 and >7 days of hospitalization, respectively) and compared to n = 11 healthy controls; mRNA and protein expression as well as biological pathway analysis were performed to gain insights into the evolution of pulmonary fibrogenesis in COVID-19; (3) Results: Median duration of hospitalization until death was 3 (IQR25-75, 3-3.75) and 14 (12.5-14) days in the early and late group, respectively. Fifty-eight out of 770 analyzed genes showed a significantly altered expression signature in COVID-19 compared to controls in a time-dependent manner. The entire study group showed an increased expression of BST2 and IL1R1, independent of hospitalization time. In the early group there was increased activity of inflammation-related genes and pathways, while fibrosis-related genes (particularly PDGFRB) and pathways dominated in the late group; (4) Conclusions: After the first week of hospitalization, there is a shift from pro-inflammatory to fibrogenic activity in severe COVID-19. IL1R1 and PDGFRB may serve as potential therapeutic targets in future studies.
Subject(s)
COVID-19/genetics , COVID-19/metabolism , Pulmonary Fibrosis/pathology , Aged , COVID-19/mortality , Female , Hospital Mortality/trends , Hospitalization , Humans , Lung/pathology , Male , Middle Aged , Pulmonary Fibrosis/metabolism , Respiratory Insufficiency/pathology , SARS-CoV-2/pathogenicityABSTRACT
For the first time, we have used phase-contrast X-ray tomography to characterize the three-dimensional (3d) structure of cardiac tissue from patients who succumbed to Covid-19. By extending conventional histopathological examination by a third dimension, the delicate pathological changes of the vascular system of severe Covid-19 progressions can be analyzed, fully quantified and compared to other types of viral myocarditis and controls. To this end, cardiac samples with a cross-section of 3.5mm were scanned at a laboratory setup as well as at a parallel beam setup at a synchrotron radiation facility the synchrotron in a parallel beam configuration. The vascular network was segmented by a deep learning architecture suitable for 3d datasets (V-net), trained by sparse manual annotations. Pathological alterations of vessels, concerning the variation of diameters and the amount of small holes, were observed, indicative of elevated occurrence of intussusceptive angiogenesis, also confirmed by high-resolution cone beam X-ray tomography and scanning electron microscopy. Furthermore, we implemented a fully automated analysis of the tissue structure in the form of shape measures based on the structure tensor. The corresponding distributions show that the histopathology of Covid-19 differs from both influenza and typical coxsackie virus myocarditis.
Subject(s)
COVID-19/complications , Myocarditis/pathology , Myocarditis/virology , Myocardium/pathology , SARS-CoV-2/isolation & purification , Artificial Intelligence , COVID-19/pathology , Heart/diagnostic imaging , Heart/virology , Humans , Imaging, Three-Dimensional , Myocarditis/diagnostic imaging , Myocarditis/etiology , Synchrotrons , Tomography, X-Ray ComputedABSTRACT
Risk stratification of COVID-19 patients is essential for pandemic management. Changes in the cell fitness marker, hFwe-Lose, can precede the host immune response to infection, potentially making such a biomarker an earlier triage tool. Here, we evaluate whether hFwe-Lose gene expression can outperform conventional methods in predicting outcomes (e.g., death and hospitalization) in COVID-19 patients. We performed a post-mortem examination of infected lung tissue in deceased COVID-19 patients to determine hFwe-Lose's biological role in acute lung injury. We then performed an observational study (n = 283) to evaluate whether hFwe-Lose expression (in nasopharyngeal samples) could accurately predict hospitalization or death in COVID-19 patients. In COVID-19 patients with acute lung injury, hFwe-Lose is highly expressed in the lower respiratory tract and is co-localized to areas of cell death. In patients presenting in the early phase of COVID-19 illness, hFwe-Lose expression accurately predicts subsequent hospitalization or death with positive predictive values of 87.8-100% and a negative predictive value of 64.1-93.2%. hFwe-Lose outperforms conventional inflammatory biomarkers and patient age and comorbidities, with an area under the receiver operating characteristic curve (AUROC) 0.93-0.97 in predicting hospitalization/death. Specifically, this is significantly higher than the prognostic value of combining biomarkers (serum ferritin, D-dimer, C-reactive protein, and neutrophil-lymphocyte ratio), patient age and comorbidities (AUROC of 0.67-0.92). The cell fitness marker, hFwe-Lose, accurately predicts outcomes in COVID-19 patients. This finding demonstrates how tissue fitness pathways dictate the response to infection and disease and their utility in managing the current COVID-19 pandemic.
Subject(s)
COVID-19 , Biomarkers , Flowers , Humans , Pandemics , ROC Curve , Retrospective Studies , SARS-CoV-2 , Severity of Illness IndexABSTRACT
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presenting as a systemic disease associated with vascular inflammation and endothelial injury. Severe forms of SARS-CoV-2 infection induce acute respiratory distress syndrome (ARDS) and there is still an ongoing debate on whether COVID-19 ARDS and its perfusion defect differs from ARDS induced by other causes. Beside pro-inflammatory cytokines (such as interleukin-1 ß [IL-1ß] or IL-6), several main pathological phenomena have been seen because of endothelial cell (EC) dysfunction: hypercoagulation reflected by fibrin degradation products called D-dimers, micro- and macrothrombosis and pathological angiogenesis. Direct endothelial infection by SARS-CoV-2 is not likely to occur and ACE-2 expression by EC is a matter of debate. Indeed, endothelial damage reported in severely ill patients with COVID-19 could be more likely secondary to infection of neighboring cells and/or a consequence of inflammation. Endotheliopathy could give rise to hypercoagulation by alteration in the levels of different factors such as von Willebrand factor. Other than thrombotic events, pathological angiogenesis is among the recent findings. Overexpression of different proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) or placental growth factors (PlGF) have been found in plasma or lung biopsies of COVID-19 patients. Finally, SARS-CoV-2 infection induces an emergency myelopoiesis associated to deregulated immunity and mobilization of endothelial progenitor cells, leading to features of acquired hematological malignancies or cardiovascular disease, which are discussed in this review. Altogether, this review will try to elucidate the pathophysiology of thrombotic complications, pathological angiogenesis and EC dysfunction, allowing better insight in new targets and antithrombotic protocols to better address vascular system dysfunction. Since treating SARS-CoV-2 infection and its potential long-term effects involves targeting the vascular compartment and/or mobilization of immature immune cells, we propose to define COVID-19 and its complications as a systemic vascular acquired hemopathy.
Subject(s)
COVID-19/metabolism , Myelopoiesis , Neovascularization, Pathologic/metabolism , Respiratory Distress Syndrome/metabolism , SARS-CoV-2/metabolism , Thrombosis/metabolism , COVID-19/pathology , COVID-19/therapy , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/virology , Fibrin Fibrinogen Degradation Products/metabolism , Fibroblast Growth Factor 2/metabolism , Humans , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Membrane Proteins/metabolism , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/therapy , Neovascularization, Pathologic/virology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , Thrombosis/pathology , Thrombosis/therapy , Thrombosis/virology , Vascular Endothelial Growth Factor A/metabolism , von Willebrand Factor/metabolismABSTRACT
SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations have signs of dysregulated innate and adaptive immune responses. Emerging evidence implicates neutrophils and the disbalance between neutrophil extracellular trap (NET) formation and degradation plays a central role in the pathophysiology of inflammation, coagulopathy, organ damage, and immunothrombosis that characterize severe cases of COVID-19. Here, we discuss the evidence supporting a role for NETs in COVID-19 manifestations and present putative mechanisms, by which NETs promote tissue injury and immunothrombosis. We present therapeutic strategies, which have been successful in the treatment of immunο-inflammatory disorders and which target dysregulated NET formation or degradation, as potential approaches that may benefit patients with severe COVID-19.
Subject(s)
COVID-19/pathology , Extracellular Traps/metabolism , Neutrophils/immunology , COVID-19/complications , COVID-19/immunology , Citrullination , Complement Activation , Humans , Neutrophils/metabolism , Platelet Activation , SARS-CoV-2/isolation & purification , Severity of Illness Index , Thrombosis/etiologyABSTRACT
Viral respiratory diseases constitute the most common reasons for hospitalization with more than half of all acute illnesses worldwide. Progressive respiratory failure with pronounced diffuse alveolar damage has been identified as the primary cause of death in COVID-19. COVID-19 pneumonia shares common histopathological hallmarks with influenza (H1N1)-related ARDS, like diffuse alveolar damage (DAD) with edema, hemorrhage, and intra-alveolar fibrin deposition. The lungs with COVID-19 pneumonia revealed perivascular inflammation, an endothelial injury, microangiopathy, and an aberrant blood vessel neoformation by intussusceptive angiogenesis. While this pronounced angiocentric inflammation is likely be found - to varying degrees - in numerous other organs, e.g., the heart, COVID-19 is hypothesized to be not just a pulmonary, but rather a systemic "vascular disease."