Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Pharmacol Res Perspect ; 11(3): e01072, 2023 06.
Article in English | MEDLINE | ID: covidwho-20239666

ABSTRACT

The current COVID-19 pandemic was an exceptional health situation, including for drug use. As there was no known effective drug for COVID-19 at the beginning of the pandemic, different drug candidates were proposed. In this article, we present the challenges for an academic Safety Department to manage the global safety of a European trial during the pandemic. The National Institute for Health and Medical Research (Inserm) conducted a European multicenter, open-label, randomized, controlled trial involving three repurposed and one-in development drugs (lopinavir/ritonavir, IFN-ß1a, hydroxychloroquine, and remdesivir) in adults hospitalized with COVID-19. From 25 March 2020 to 29 May 2020, the Inserm Safety Department had to manage 585 Serious Adverse Events (SAEs) initial notification and 396 follow-up reports. The Inserm Safety Department's staff was mobilized to manage these SAEs and to report Expedited safety reports to the competent authorities within the legal timeframes. More than 500 queries were sent to the investigators due to a lack of or incoherent information on SAE forms. At the same time, the investigators were overwhelmed by the management of patients suffering from COVID-19 infection. These particular conditions of missing data and lack of accurate description of adverse events made evaluation of the SAEs very difficult, particularly the assessment of the causal role of each investigational medicinal product. In parallel, working difficulties were accentuated by the national lockdown, frequent IT tool dysfunctions, delayed implementation of monitoring and the absence of automatic alerts for SAE form modification. Although COVID-19 is a confounding factor per se, the delay in and quality of SAE form completion and the real-time medical analysis by the Inserm Safety Department were major issues in the quick identification of potential safety signals. To conduct a high-quality clinical trial and ensure patient safety, all stakeholders must take their roles and responsibilities.


Subject(s)
COVID-19 , Adult , Humans , Pandemics , Pharmacovigilance , Communicable Disease Control , Hydroxychloroquine/adverse effects , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
2.
Contemp Clin Trials ; 131: 107267, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20235645

ABSTRACT

SETTING: Health measures taken during the pandemic deeply modified the clinical research practices. At the same time, the demand for the results of the COVID-19 trials was urgent. Thus, the objective of this article is to share Inserm's experience in ensuring quality control in clinical trials in this challenging context. OBJECTIVES: DisCoVeRy is a phase III randomized study that aimed at evaluating the safety and efficacy of 4 therapeutic strategies in hospitalized COVID-19 adult patients. Between March, 22nd 2020 and January, 20th 2021, 1309 patients were included. In order to guarantee the best quality of data, the Sponsor had to adapt to the current sanitary measures and to their impact on clinical research activity, notably by adapting Monitoring Plan objectives, involving the research departments of the participating hospitals and a network of clinical research assistants (CRAs). RESULTS: Overall, 97 CRAs were involved and performed 909 monitoring visits. The monitoring of 100% of critical data for all patients included in the analysis was achieved, and despite of the pandemic context, a conform consent was recovered for more than 99% of patients. Results of the study were published in May and September 2021. DISCUSSION/CONCLUSION: The main monitoring objective was met thanks to the mobilization of considerable personnel resources, within a very tight time frame and external hurdles. There is a need for further reflection to adapt the lessons learned from this experience to the context of routine practice and to improve the response of French academic research during a future epidemic.

3.
Clin Microbiol Infect ; 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2269988

ABSTRACT

BACKGROUND: COVID-19 has been extensively characterized in immunocompetent hosts and to a lesser extent in immunocompromised populations. Among the latter, patients treated for B-cell malignancies have immunosuppression generated by B-cell lymphodepletion/aplasia resulting in an increased susceptibility to respiratory virus infections and poor response to vaccination. The consequence is that these patients are likely to develop severe or critical COVID-19. OBJECTIVES: To examine the overall impact of COVID-19 in patients treated for a B-cell malignancy or receiving chimeric antigen receptor T (CAR-T) immunotherapy administered in case of relapsed or refractory disease. SOURCES: We searched in the MEDLINE database to identify relevant studies, trials, reviews, or meta-analyses focusing on SARS-CoV-2 vaccination or COVID-19 management in patients treated for a B-cell malignancy or recipients of CAR-T cell therapy up to 8 July 2022. CONTENT: The epidemiology and outcomes of COVID-19 in patients with B-cell malignancy and CAR-T cell recipients are summarized. Vaccine efficacy in these subgroups is compiled. Considering the successive surges of variants of concern, we propose a critical appraisal of treatment strategies by discussing the use of neutralizing monoclonal antibodies, convalescent plasma therapy, direct-acting antiviral drugs, corticosteroids, and immunomodulators. IMPLICATIONS: For patients with B-cell malignancy, preventive vaccination against SARS-CoV-2 remains essential and the management of COVID-19 includes control of viral replication because of protracted SARS-CoV-2 shedding. Passive immunotherapy (monoclonal neutralizing antibody therapy and convalescent plasma therapy) and direct-active antivirals, such as remdesivir and nirmatrelvir/ritonavir are the best currently available treatments. Real-world data and subgroup analyses in larger trials are warranted to assess COVID-19 therapeutics in B-cell depleted populations.

4.
Lancet Respir Med ; 11(5): 453-464, 2023 05.
Article in English | MEDLINE | ID: covidwho-2249489

ABSTRACT

BACKGROUND: Interpretation of the evidence from randomised controlled trials (RCTs) of remdesivir in patients treated in hospital for COVID-19 is conflicting. We aimed to assess the benefits and harms of remdesivir compared with placebo or usual care in these patients, and whether treatment effects differed between prespecified patient subgroups. METHODS: For this systematic review and meta-analysis, we searched PubMed, Embase, the Cochrane COVID-19 trial registry, ClinicalTrials.gov, the International Clinical Trials Registry Platform, and preprint servers from Jan 1, 2020, until April 11, 2022, for RCTs of remdesivir in adult patients hospitalised with COVID-19, and contacted the authors of eligible trials to request individual patient data. The primary outcome was all-cause mortality at day 28 after randomisation. We used multivariable hierarchical regression-adjusting for respiratory support, age, and enrollment period-to investigate effect modifiers. This study was registered with PROSPERO, CRD42021257134. FINDINGS: Our search identified 857 records, yielding nine RCTs eligible for inclusion. Of these nine eligible RCTs, individual data were provided for eight, covering 10 480 patients hospitalised with COVID-19 (99% of such patients included in such RCTs worldwide) recruited between Feb 6, 2020, and April 1, 2021. Within 28 days of randomisation, 662 (12·5%) of 5317 patients assigned to remdesivir and 706 (14·1%) of 5005 patients assigned to no remdesivir died (adjusted odds ratio [aOR] 0·88, 95% CI 0·78-1·00, p=0·045). We found evidence for a credible subgroup effect according to respiratory support at baseline (pinteraction=0·019). Of patients who were ventilated-including those who received high-flow oxygen-253 (30·0%) of 844 patients assigned to remdesivir died compared with 241 (28·5%) of 846 patients assigned to no remdesivir (aOR 1·10 [0·88-1·38]; low-certainty evidence). Of patients who received no oxygen or low-flow oxygen, 409 (9·1%) of 4473 patients assigned to remdesivir died compared with 465 (11·2%) of 4159 patients assigned to no remdesivir (0·80 [0·70-0·93]; high-certainty evidence). No credible subgroup effect was found for time to start of remdesivir after symptom onset, age, presence of comorbidities, enrolment period, or corticosteroid use. Remdesivir did not increase the frequency of severe or serious adverse events. INTERPRETATION: This individual patient data meta-analysis showed that remdesivir reduced mortality in patients hospitalised with COVID-19 who required no or conventional oxygen support, but was underpowered to evaluate patients who were ventilated when receiving remdesivir. The effect size of remdesivir in patients with more respiratory support or acquired immunity and the cost-effectiveness of remdesivir remain to be further elucidated. FUNDING: EU-RESPONSE.


Subject(s)
COVID-19 , Adult , Humans , COVID-19 Drug Treatment
5.
Br J Clin Pharmacol ; 89(4): 1318-1328, 2023 04.
Article in English | MEDLINE | ID: covidwho-2213501

ABSTRACT

Setting-up a high quality, compliant and efficient pharmacovigilance (PV) system in multi-country clinical trials can be more challenging for academic sponsors than for companies. To ensure the safety of all participants in academic studies and that the PV system fulfils all regulations, we set up a centralized PV system that allows sponsors to delegate work on PV. This initiative was put in practice by our Inserm-ANRS MIE PV department in two distinct multinational European consortia with 19 participating countries: conect4children (c4c) for paediatrics research and EU-Response for Covid-19 platform trials. The centralized PV system consists of some key procedures to harmonize the complex safety processes, creation of a local safety officer (LSO) network and centralization of all safety activities. The key procedures described the safety management plan for each trial and how tasks were shared and delegated between all stakeholders. Processing of serious adverse events (SAEs) in a unique database guaranteed the full control of the safety data and continuous evaluation of the risk-benefit ratio. The LSO network participated in efficient regulatory compliance across multiple countries. In total, there were 1312 SAEs in EU-Response and 83 SAEs in c4c in the four trials. We present here the lessons learnt from our experience in four clinical trials. We managed heterogeneous European local requirements and implemented efficient communication with all trial teams. Our approach builds capacity for PV that can be used by multiple academic sponsors.


Subject(s)
COVID-19 , Pharmacovigilance , Humans , Child , Risk Assessment , Databases, Factual
7.
Crit Care ; 27(1): 9, 2023 01 10.
Article in English | MEDLINE | ID: covidwho-2196397

ABSTRACT

BACKGROUND: Baricitinib has shown efficacy in hospitalized patients with COVID-19, but no placebo-controlled trials have focused specifically on severe/critical COVID, including vaccinated participants. METHODS: Bari-SolidAct is a phase-3, multicentre, randomised, double-blind, placebo-controlled trial, enrolling participants from June 3, 2021 to March 7, 2022, stopped prematurely for external evidence. Patients with severe/critical COVID-19 were randomised to Baricitinib 4 mg once daily or placebo, added to standard of care. The primary endpoint was all-cause mortality within 60 days. Participants were remotely followed to day 90 for safety and patient related outcome measures. RESULTS: Two hundred ninety-nine patients were screened, 284 randomised, and 275 received study drug or placebo and were included in the modified intent-to-treat analyses (139 receiving baricitinib and 136 placebo). Median age was 60 (IQR 49-69) years, 77% were male and 35% had received at least one dose of SARS-CoV2 vaccine. There were 21 deaths at day 60 in each group, 15.1% in the baricitinib group and 15.4% in the placebo group (adjusted absolute difference and 95% CI - 0.1% [- 8·3 to 8·0]). In sensitivity analysis censoring observations after drug discontinuation or rescue therapy (tocilizumab/increased steroid dose), proportions of death were 5.8% versus 8.8% (- 3.2% [- 9.0 to 2.7]), respectively. There were 148 serious adverse events in 46 participants (33.1%) receiving baricitinib and 155 in 51 participants (37.5%) receiving placebo. In subgroup analyses, there was a potential interaction between vaccination status and treatment allocation on 60-day mortality. In a subsequent post hoc analysis there was a significant interaction between vaccination status and treatment allocation on the occurrence of serious adverse events, with more respiratory complications and severe infections in vaccinated participants treated with baricitinib. Vaccinated participants were on average 11 years older, with more comorbidities. CONCLUSION: This clinical trial was prematurely stopped for external evidence and therefore underpowered to conclude on a potential survival benefit of baricitinib in severe/critical COVID-19. We observed a possible safety signal in vaccinated participants, who were older with more comorbidities. Although based on a post-hoc analysis, these findings warrant further investigation in other trials and real-world studies. Trial registration Bari-SolidAct is registered at NCT04891133 (registered May 18, 2021) and EUClinicalTrials.eu ( 2022-500385-99-00 ).


Subject(s)
COVID-19 , Humans , Adult , Male , Middle Aged , Female , SARS-CoV-2 , RNA, Viral , COVID-19 Drug Treatment , Double-Blind Method
8.
Lancet ; 400(10359): 1175-1176, 2022 10 08.
Article in English | MEDLINE | ID: covidwho-2050113
9.
Expert Rev Anti Infect Ther ; 20(9): 1155-1162, 2022 09.
Article in English | MEDLINE | ID: covidwho-1937582

ABSTRACT

INTRODUCTION: Chimeric antigen receptor T (CAR-T) cell immunotherapy has revolutionized the prognosis of refractory or relapsed B-cell malignancies. CAR-T cell recipients have immunosuppression generated by B-cell aplasia, leading to a higher susceptibility to respiratory virus infections and poor response to vaccination. AREAS COVERED: This review focuses on the challenge posed by B-cell targeted immunotherapies: managing long-lasting B-cell impairment during the successive surges of a deadly viral pandemic. We restricted this report to data regarding vaccine efficacy in CAR-T cell recipients, outcomes after developing COVID-19 and specificities of treatment management. We searched in MEDLINE database to identify relevant studies until 31 March 2022. EXPERT OPINION: Among available observational studies, the pooled mortality rate reached 40% in CAR-T cell recipients infected by SARS-CoV-2. Additionally, vaccine responses seem to be widely impaired in recipients (seroconversion 20%, T-cell response 50%). In this setting of B-cell depletion, passive immunotherapy is the backbone of treatment. Convalescent plasma therapy has proven to be a highly effective curative treatment with rare adverse events. Neutralizing monoclonal antibodies could be used as pre-exposure prophylaxis or early treatment but their neutralizing activity is constantly challenged by new variants. In order to reduce viral replication, direct-acting antiviral drugs should be considered.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Receptors, Chimeric Antigen , Antiviral Agents/therapeutic use , COVID-19/therapy , Hepatitis C, Chronic/drug therapy , Humans , Immunization, Passive , Immunotherapy , SARS-CoV-2 , T-Lymphocytes , COVID-19 Serotherapy
14.
J Antimicrob Chemother ; 77(5): 1404-1412, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1722504

ABSTRACT

BACKGROUND: The antiviral efficacy of remdesivir in COVID-19 hospitalized patients remains controversial. OBJECTIVES: To estimate the effect of remdesivir in blocking viral replication. METHODS: We analysed nasopharyngeal normalized viral loads from 665 hospitalized patients included in the DisCoVeRy trial (NCT04315948; EudraCT 2020-000936-23), randomized to either standard of care (SoC) or SoC + remdesivir. We used a mathematical model to reconstruct viral kinetic profiles and estimate the antiviral efficacy of remdesivir in blocking viral replication. Additional analyses were conducted stratified on time of treatment initiation (≤7 or >7 days since symptom onset) or viral load at randomization (< or ≥3.5 log10 copies/104 cells). RESULTS: In our model, remdesivir reduced viral production by infected cells by 2-fold on average (95% CI: 1.5-3.2-fold). Model-based simulations predict that remdesivir reduced time to viral clearance by 0.7 days compared with SoC, with large inter-individual variabilities (IQR: 0.0-1.3 days). Remdesivir had a larger impact in patients with high viral load at randomization, reducing viral production by 5-fold on average (95% CI: 2.8-25-fold) and the median time to viral clearance by 2.4 days (IQR: 0.9-4.5 days). CONCLUSIONS: Remdesivir halved viral production, leading to a median reduction of 0.7 days in the time to viral clearance compared with SoC. The efficacy was larger in patients with high viral load at randomization.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Alanine/therapeutic use , Antiviral Agents/therapeutic use , Humans , SARS-CoV-2
15.
Eur J Anaesthesiol ; 39(5): 427-435, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1707427

ABSTRACT

BACKGROUND: SARS-Cov-2 (COVID-19) has become a major worldwide health concern since its appearance in China at the end of 2019. OBJECTIVE: To evaluate the intrinsic mortality and burden of COVID-19 and seasonal influenza pneumonia in ICUs in the city of Lyon, France. DESIGN: A retrospective study. SETTING: Six ICUs in a single institution in Lyon, France. PATIENTS: Consecutive patients admitted to an ICU with SARS-CoV-2 pneumonia from 27 February to 4 April 2020 (COVID-19 group) and seasonal influenza pneumonia from 1 November 2015 to 30 April 2019 (influenza group). A total of 350 patients were included in the COVID-19 group (18 refused to consent) and 325 in the influenza group (one refused to consent). Diagnosis was confirmed by RT-PCR. Follow-up was completed on 1 April 2021. MAIN OUTCOMES AND MEASURES: Differences in 90-day adjusted-mortality between the COVID-19 and influenza groups were evaluated using a multivariable Cox proportional hazards model. RESULTS: COVID-19 patients were younger, mostly men and had a higher median BMI, and comorbidities, including immunosuppressive condition or respiratory history were less frequent. In univariate analysis, no significant differences were observed between the two groups regarding in-ICU mortality, 30, 60 and 90-day mortality. After Cox modelling adjusted on age, sex, BMI, cancer, sepsis-related organ failure assessment (SOFA) score, simplified acute physiology score SAPS II score, chronic obstructive pulmonary disease and myocardial infarction, the probability of death associated with COVID-19 was significantly higher in comparison to seasonal influenza [hazard ratio 1.57, 95% CI (1.14 to 2.17); P = 0.006]. The clinical course and morbidity profile of both groups was markedly different; COVID-19 patients had less severe illness at admission (SAPS II score, 37 [28 to 48] vs. 48 [39 to 61], P < 0.001 and SOFA score, 4 [2 to 8] vs. 8 [5 to 11], P < 0.001), but the disease was more severe considering ICU length of stay, duration of mechanical ventilation, PEEP level and prone positioning requirement. CONCLUSION: After ICU admission, COVID-19 was associated with an increased risk of death compared with seasonal influenza. Patient characteristics, clinical course and morbidity profile of these diseases is markedly different.


Subject(s)
COVID-19 , Influenza, Human , Pneumonia , Female , Hospital Mortality , Hospitals , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Intensive Care Units , Male , Retrospective Studies , SARS-CoV-2 , Seasons
17.
Therapie ; 77(1): 59-67, 2022.
Article in English | MEDLINE | ID: covidwho-1569090

ABSTRACT

The COVID-19 pandemic led to the deployment of an unprecedented academic and industrial research effort, the sometimes redundant nature of which is regrettable, as is the lack of both national and international management. However, it must be noted that during this crisis, regulatory procedures were adapted and certain obstacles in the organisation of clinical research were partly removed to contribute to the deployment of trials as close as possible to patients and to facilitate monitoring and control procedures. The digitisation of certain processes and the decentralisation of certain activities were implemented under the cover of a mobilisation of the authorities and all institutional, academic and industrial players. While in the UK, the optimisation of resources through a single platform trial has made it possible to demonstrate or invalidate the efficacy of many treatments, in France the health crisis has highlighted the fragility of the organisation of clinical research, in particular a lack of coordination and funding, difficulties in implementing studies and a certain reluctance to share data. However, the crisis has also revealed the adaptability of the various stakeholders and has led to the improvement of several processes useful for the deployment of therapeutic innovation. Let us hope that the lessons learned during this crisis will allow for greater efficiency in the event of a new pandemic and, above all, that the progress made will continue to apply to all future clinical research activities.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Pandemics , Biomedical Research , COVID-19/epidemiology , Clinical Trials as Topic , France/epidemiology , Humans , Pharmaceutical Preparations , United Kingdom/epidemiology
18.
Therapie ; 2021.
Article in French | EuropePMC | ID: covidwho-1564057

ABSTRACT

La pandémie de coronavirus disease -19 (COVID-19) a conduit au déploiement d’un effort de recherche académique et industriel sans précédent dont on peut regretter le caractère parfois redondant ainsi que le manque de pilotage tant national qu’international. Pourtant, force est de constater qu’à l’occasion de cette crise, les procédures réglementaires ont été adaptées de même que certains freins dans l’organisation de la recherche clinique ont pu être en partie levés pour contribuer au déploiement d’essais au plus près des patients et faciliter les modalités de suivi et de contrôle. La digitalisation de certains processus et la décentralisation de certaines activités ont pu être mises en œuvre sous couvert d’une mobilisation des autorités et de l’ensemble des acteurs institutionnels, académiques ou industriels. Si outre-manche, l’optimisation des ressources, au travers d’un essai de plateforme unique, a permis de montrer ou d’infirmer l’efficacité de nombreux traitements, en France la crise sanitaire a mis en lumière la fragilité de l’organisation de la recherche clinique, notamment un déficit de coordination et de financement, des difficultés dans la mise en œuvre des études ou encore une certaine frilosité concernant le partage des données. Cependant, la crise a aussi révélé les capacités d’adaptation des différents acteurs et permis l’amélioration de plusieurs processus utiles au déploiement de l’innovation thérapeutique. Gageons que les leçons tirées à l’occasion de cette crise permettront une meilleure efficacité en cas de nouvelle pandémie et surtout que les progrès obtenus continueront de s’appliquer à l’ensemble des activités de recherche clinique futures.

20.
Lancet Infect Dis ; 22(2): 209-221, 2022 02.
Article in English | MEDLINE | ID: covidwho-1428619

ABSTRACT

BACKGROUND: The antiviral efficacy of remdesivir against SARS-CoV-2 is still controversial. We aimed to evaluate the clinical efficacy of remdesivir plus standard of care compared with standard of care alone in patients admitted to hospital with COVID-19, with indication of oxygen or ventilator support. METHODS: DisCoVeRy was a phase 3, open-label, adaptive, multicentre, randomised, controlled trial conducted in 48 sites in Europe (France, Belgium, Austria, Portugal, Luxembourg). Adult patients (aged ≥18 years) admitted to hospital with laboratory-confirmed SARS-CoV-2 infection and illness of any duration were eligible if they had clinical evidence of hypoxaemic pneumonia, or required oxygen supplementation. Exclusion criteria included elevated liver enzymes, severe chronic kidney disease, any contraindication to one of the studied treatments or their use in the 29 days before random assignment, or use of ribavirin, as well as pregnancy or breastfeeding. Participants were randomly assigned (1:1:1:1:1) to receive standard of care alone or in combination with remdesivir, lopinavir-ritonavir, lopinavir-ritonavir and interferon beta-1a, or hydroxychloroquine. Randomisation used computer-generated blocks of various sizes; it was stratified on severity of disease at inclusion and on European administrative region. Remdesivir was administered as 200 mg intravenous infusion on day 1, followed by once daily, 1-h infusions of 100 mg up to 9 days, for a total duration of 10 days. It could be stopped after 5 days if the participant was discharged. The primary outcome was the clinical status at day 15 measured by the WHO seven-point ordinal scale, assessed in the intention-to-treat population. Safety was assessed in the modified intention-to-treat population and was one of the secondary outcomes. This trial is registered with the European Clinical Trials Database, EudraCT2020-000936-23, and ClinicalTrials.gov, NCT04315948. FINDINGS: Between March 22, 2020, and Jan 21, 2021, 857 participants were enrolled and randomly assigned to remdesivir plus standard of care (n=429) or standard of care only (n=428). 15 participants were excluded from analysis in the remdesivir group, and ten in the control group. At day 15, the distribution of the WHO ordinal scale was: (1) not hospitalised, no limitations on activities (61 [15%] of 414 in the remdesivir group vs 73 [17%] of 418 in the control group); (2) not hospitalised, limitation on activities (129 [31%] vs 132 [32%]); (3) hospitalised, not requiring supplemental oxygen (50 [12%] vs 29 [7%]); (4) hospitalised, requiring supplemental oxygen (76 [18%] vs 67 [16%]); (5) hospitalised, on non-invasive ventilation or high flow oxygen devices (15 [4%] vs 14 [3%]); (6) hospitalised, on invasive mechanical ventilation or extracorporeal membrane oxygenation (62 [15%] vs 79 [19%]); (7) death (21 [5%] vs 24 [6%]). The difference between treatment groups was not significant (odds ratio 0·98 [95% CI 0·77-1·25]; p=0·85). There was no significant difference in the occurrence of serious adverse events between treatment groups (remdesivir, 135 [33%] of 406 vs control, 130 [31%] of 418; p=0·48). Three deaths (acute respiratory distress syndrome, bacterial infection, and hepatorenal syndrome) were considered related to remdesivir by the investigators, but only one by the sponsor's safety team (hepatorenal syndrome). INTERPRETATION: No clinical benefit was observed from the use of remdesivir in patients who were admitted to hospital for COVID-19, were symptomatic for more than 7 days, and required oxygen support. FUNDING: European Union Commission, French Ministry of Health, Domaine d'intérêt majeur One Health Île-de-France, REACTing, Fonds Erasme-COVID-Université Libre de Bruxelles, Belgian Health Care Knowledge Centre, Austrian Group Medical Tumor, European Regional Development Fund, Portugal Ministry of Health, Portugal Agency for Clinical Research and Biomedical Innovation. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/therapy , Standard of Care , Adenosine Monophosphate/therapeutic use , Aged , Alanine/therapeutic use , COVID-19/mortality , Europe , Extracorporeal Membrane Oxygenation , Female , Hospitalization , Humans , Male , Middle Aged , Oxygen/administration & dosage , Respiration, Artificial , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL