Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
Comput Biol Med ; 138: 104858, 2021 11.
Article in English | MEDLINE | ID: covidwho-1400212


This study presents a series of numerical simulations for airflow field and particle dispersion and deposition around a mannequin inside a ventilated room. A 3-D airway system of a volunteer subject with a large respiratory system was reconstructed from the nostril inlet to the end of the tracheobronchial tree 4th generation and was integrated into a standing mannequin at the center of a room. The room ventilation system supplied air through a diffuser and expelled air via a damper in three modes. The airflow field was first evaluated by solving the governing equations and the k-ω SST transitional turbulence model using the Ansys-Fluent software. Then spherical particles with various diameters were released into the room, and their trajectories were evaluated using the Lagrangian approach. Aspiration fraction and particle deposition for inhalation flow rates of 15 and 30 L/min were analyzed using a modified discrete random walk (DRW) stochastic model using a user-defined function (UDF) coupled to the Ansys-Fluent discrete phase model. For the first ventilation mode, a recirculation flow region formed behind the mannequin that led the airflow streamlines to the breathing zone. A recirculation flow formed in front of the face for the second ventilation mode that led the airflow streamlines out of the mannequin breathing zone. For the third mode, however, there was no strong recirculation flow zone around the mannequin. Simulation results showed that the aspiration fraction in the first ventilation mode was higher than the other modes. In addition, the regional deposition rates and deposition patterns of particles inside the respiratory system were presented for each region. Accordingly, most large particles were trapped in the nasal passage; however, some large particles penetrated deeper into the airway due to the large airway size. For the higher breathing rate, the percentage of large escaped particles from the lobe branches dropped by a factor of 7 compared to the lower breathing rate.

Manikins , Respiration , Bronchi , Computer Simulation , Humans , Particle Size
Indoor Air ; 31(6): 1896-1912, 2021 11.
Article in English | MEDLINE | ID: covidwho-1322740


The COVID-19 pandemic has highlighted the need to improve understanding of droplet transport during expiratory emissions. While historical emphasis has been placed on violent events such as coughing and sneezing, the recognition of asymptomatic and presymptomatic spread has identified the need to consider other modalities, such as speaking. Accurate prediction of infection risk produced by speaking requires knowledge of both the droplet size distributions that are produced, as well as the expiratory flow fields that transport the droplets into the surroundings. This work demonstrates that the expiratory flow field produced by consonant productions is highly unsteady, exhibiting extremely broad inter- and intra-consonant variability, with mean ejection angles varying from ≈+30° to -30°. Furthermore, implementation of a physical mouth model to quantify the expiratory flow fields for fricative pronunciation of [f] and [θ] demonstrates that flow velocities at the lips are higher than previously predicted, reaching 20-30 m/s, and that the resultant trajectories are unstable. Because both large and small droplet transport are directly influenced by the magnitude and trajectory of the expirated air stream, these findings indicate that prior investigations of the flow dynamics during speech have largely underestimated the fluid penetration distances that can be achieved for particular consonant utterances.

Aerosols , Air Pollution, Indoor , Mouth/physiology , Speech/physiology , COVID-19 , Humans , Research Subjects , SARS-CoV-2
J Hazard Mater ; 420: 126587, 2021 10 15.
Article in English | MEDLINE | ID: covidwho-1307043


In this study, the motion and distribution of droplets containing coronaviruses emitted by coughing of an infected person in front of a classroom (e.g., a teacher) were investigated using CFD. A 3D turbulence model was used to simulate the airflow in the classroom, and a Lagrangian particle trajectory analysis method was used to track the droplets. The numerical model was validated and was used to study the effects of ventilation airflow speeds of 3, 5, and 7 m/s on the dispersion of droplets of different sizes. In particular, the effect of installing transparent barriers in front of the seats on reducing the average droplet concentration was examined. The results showed that using the seat partitions for individuals can prevent the infection to a certain extent. An increase in the ventilation air velocity increased the droplets' velocities in the airflow direction, simultaneously reducing the trapping time of the droplets by solid barriers. As expected, in the absence of partitions, the closest seats to the infected person had the highest average droplet concentration (3.80 × 10-8 kg/m3 for the case of 3 m/s).

COVID-19 , Humans , SARS-CoV-2 , Ventilation