Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Infect Dis ; 73(10): 1822-1830, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1522141

ABSTRACT

BACKGROUND: Prompt identification of infections is critical for slowing the spread of infectious diseases. However, diagnostic testing shortages are common in emerging diseases, low resource settings, and during outbreaks. This forces difficult decisions regarding who receives a test, often without knowing the implications of those decisions on population-level transmission dynamics. Clinical prediction rules (CPRs) are commonly used tools to guide clinical decisions. METHODS: Using early severe acute respiratory syndrome coronavirus disease 2 (SARS-CoV-2) as an example, we used data from electronic health records to develop a parsimonious 5-variable CPR to identify those who are most likely to test positive. To consider the implications of gains in daily case detection at the population level, we incorporated testing using the CPR into a compartmentalized model of SARS-CoV-2. RESULTS: We found that applying this CPR (area under the curve, 0.69; 95% confidence interval, .68-.70) to prioritize testing increased the proportion of those testing positive in settings of limited testing capacity. We found that prioritized testing led to a delayed and lowered infection peak (ie, "flattens the curve"), with the greatest impact at lower values of the effective reproductive number (such as with concurrent community mitigation efforts), and when higher proportions of infectious persons seek testing. In addition, prioritized testing resulted in reductions in overall infections as well as hospital and intensive care unit burden. CONCLUSION: We highlight the population-level benefits of evidence-based allocation of limited diagnostic capacity.SummaryWhen the demand for diagnostic tests exceeds capacity, the use of a clinical prediction rule to prioritize diagnostic testing can have meaningful impact on population-level outcomes, including delaying and lowering the infection peak, and reducing healthcare burden.


Subject(s)
COVID-19 , SARS-CoV-2 , Clinical Decision Rules , Diagnostic Techniques and Procedures , Diagnostic Tests, Routine , Hospitals , Humans
2.
Non-conventional in English | MEDLINE, Grey literature | ID: grc-750503

ABSTRACT

Prompt identification of cases is critical for slowing the spread of COVID-19. However, many areas have faced diagnostic testing shortages, requiring difficult decisions to be made regarding who receives a test, without knowing the implications of those decisions on population-level transmission dynamics. Clinical prediction rules (CPRs) are commonly used tools to guide clinical decisions. We used data from electronic health records to develop a parsimonious 5-variable CPR to identify those who are most likely to test positive, and found that its application to prioritize testing increases the proportion of those testing positive in settings of limited testing capacity. To consider the implications of these gains in daily case detection on the population level, we incorporated testing using the CPR into a compartmentalized disease transmission model. We found that prioritized testing led to a delayed and lowered infection peak (i.e. 'flattens the curve'), with the greatest impact at lower values of the effective reproductive number (such as with concurrent social distancing measures), and when higher proportions of infectious persons seek testing. Additionally, prioritized testing resulted in reductions in overall infections as well as hospital and intensive care unit (ICU) burden. In conclusion, we present a novel approach to evidence-based allocation of limited diagnostic capacity, to achieve public health goals for COVID-19.

3.
Public Health Rep ; 136(3): 345-353, 2021 05.
Article in English | MEDLINE | ID: covidwho-1067033

ABSTRACT

OBJECTIVE: US-based descriptions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have focused on patients with severe disease. Our objective was to describe characteristics of a predominantly outpatient population tested for SARS-CoV-2 in an area receiving comprehensive testing. METHODS: We extracted data on demographic characteristics and clinical data for all patients (91% outpatient) tested for SARS-CoV-2 at University of Utah Health clinics in Salt Lake County, Utah, from March 10 through April 24, 2020. We manually extracted data on symptoms and exposures from a subset of patients, and we calculated the adjusted odds of receiving a positive test result by demographic characteristics and clinical risk factors. RESULTS: Of 17 662 people tested, 1006 (5.7%) received a positive test result for SARS-CoV-2. Hispanic/Latinx people were twice as likely as non-Hispanic White people to receive a positive test result (adjusted odds ratio [aOR] = 2.0; 95% CI, 1.3-3.1), although the severity at presentation did not explain this discrepancy. Young people aged 0-19 years had the lowest rates of receiving a positive test result for SARS-CoV-2 (<4 cases per 10 000 population), and adults aged 70-79 and 40-49 had the highest rates of hospitalization per 100 000 population among people who received a positive test result (16 and 11, respectively). CONCLUSIONS: We found disparities by race/ethnicity and age in access to testing and in receiving a positive test result among outpatients tested for SARS-CoV-2. Further research and public health outreach on addressing racial/ethnic and age disparities will be needed to effectively combat the coronavirus disease 2019 pandemic in the United States.


Subject(s)
COVID-19 Testing/statistics & numerical data , COVID-19/diagnosis , COVID-19/epidemiology , Health Status Disparities , Outpatients/statistics & numerical data , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Child , Child, Preschool , Cohort Studies , Female , Hospitalization/statistics & numerical data , Humans , Infant , Male , Middle Aged , Race Factors , Registries , SARS-CoV-2 , Utah/epidemiology , Young Adult
4.
medRxiv ; 2020 Jul 08.
Article in English | MEDLINE | ID: covidwho-665222

ABSTRACT

Prompt identification of cases is critical for slowing the spread of COVID-19. However, many areas have faced diagnostic testing shortages, requiring difficult decisions to be made regarding who receives a test, without knowing the implications of those decisions on population-level transmission dynamics. Clinical prediction rules (CPRs) are commonly used tools to guide clinical decisions. We used data from electronic health records to develop a parsimonious 5-variable CPR to identify those who are most likely to test positive, and found that its application to prioritize testing increases the proportion of those testing positive in settings of limited testing capacity. To consider the implications of these gains in daily case detection on the population level, we incorporated testing using the CPR into a compartmentalized disease transmission model. We found that prioritized testing led to a delayed and lowered infection peak (i.e. 'flattens the curve'), with the greatest impact at lower values of the effective reproductive number (such as with concurrent social distancing measures), and when higher proportions of infectious persons seek testing. Additionally, prioritized testing resulted in reductions in overall infections as well as hospital and intensive care unit (ICU) burden. In conclusion, we present a novel approach to evidence-based allocation of limited diagnostic capacity, to achieve public health goals for COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...