Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Insights Imaging ; 13(1): 41, 2022 Mar 07.
Article in English | MEDLINE | ID: covidwho-1731541

ABSTRACT

OBJECTIVES: Data from radiological departments provide important information on overall quantities of medical care provided. With this study we used a comprehensive analysis of radiological examinations as a surrogate marker to quantify the effect of the different COVID-19 waves on medical care provided. METHODS: Radiological examination volumes during the different waves of infection were compared among each other as well as to time-matched control periods from pre-pandemic years using a locally weighted scatterplot smoothing as well as negative binominal regression models. RESULTS: A total of 1,321,119 radiological examinations were analyzed. Examination volumes were reduced by about 10% over the whole study period (IRR = 0.90; 95% CI 0.89-0.92), with a focus on acute medical care (0.84; 0.83-0.85) and outpatients (0.93: 0.90-0.97). When compared to wave 1, examination volumes were about 17% higher during wave 2 (1.17; 1.10-1.25), and 33% higher in wave 3 of the pandemic (1.33; 1.24-1.42). CONCLUSIONS: This study shows the severe effect of COVID-19 pandemic and related shutdown measures on overall provided medical care as measured by radiological examinations. When compared, the decrease of medical care was more pronounced in the earlier waves of the pandemic.

2.
Diagnostics (Basel) ; 11(9)2021 Sep 04.
Article in English | MEDLINE | ID: covidwho-1390560

ABSTRACT

We evaluated a simple semi-quantitative (SSQ) method for determining pulmonary involvement in computed tomography (CT) scans of COVID-19 patients. The extent of lung involvement in the first available CT was assessed with the SSQ method and subjectively. We identified risk factors for the need of invasive ventilation, intensive care unit (ICU) admission and for time to death after infection. Additionally, the diagnostic performance of both methods was evaluated. With the SSQ method, a 10% increase in the affected lung area was found to significantly increase the risk for need of ICU treatment with an odds ratio (OR) of 1.68 and for invasive ventilation with an OR of 1.35. Male sex, age, and pre-existing chronic lung disease were also associated with higher risks. A larger affected lung area was associated with a higher instantaneous risk of dying (hazard ratio (HR) of 1.11) independently of other risk factors. SSQ measurement was slightly superior to the subjective approach with an AUC of 73.5% for need of ICU treatment and 72.7% for invasive ventilation. SSQ assessment of the affected lung in the first available CT scans of COVID-19 patients may support early identification of those with higher risks for need of ICU treatment, invasive ventilation, or death.

3.
World J Pediatr ; 17(5): 484-494, 2021 10.
Article in English | MEDLINE | ID: covidwho-1366410

ABSTRACT

BACKGROUND: Healthcare workers are considered a particularly high-risk group during the coronavirus disease 2019 (COVID-19) pandemic. Healthcare workers in paediatrics are a unique subgroup: they come into frequent contact with children, who often experience few or no symptoms when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and, therefore, may transmit the disease to unprotected staff. In Germany, no studies exist evaluating the risk of COVID-19 to healthcare workers in paediatric institutions. METHODS: We tested the staff at a large children's hospital in Germany for immunoglobulin (Ig) G antibodies against the nucleocapsid protein of SARS-CoV-2 in a period between the first and second epidemic wave in Germany. We used a questionnaire to assess each individual's exposure risk and his/her own perception of having already been infected with SARS-CoV-2. RESULTS: We recruited 619 participants from all sectors, clinical and non-clinical, constituting 70% of the entire staff. The seroprevalence of SARS-CoV-2 antibodies was 0.325% (95% confidence interval 0.039-1.168). Self-perceived risk of a previous SARS-CoV-2 infection decreased with age (odds ratio, 0.81; 95% confidence interval, 0.70-0.93). Having experienced symptoms more than doubled the odds of a high self-perceived risk (odds ratio, 2.18; 95% confidence interval, 1.59-3.00). There was no significant difference in self-perceived risk between men and women. CONCLUSIONS: Seroprevalence was low among healthcare workers at a large children's hospital in Germany before the second epidemic wave, and it was far from a level that confers herd immunity. Self-perceived risk of infection is often overestimated.


Subject(s)
Attitude of Health Personnel , Attitude to Health , COVID-19/blood , COVID-19/epidemiology , Health Personnel/psychology , Immunoglobulin G/blood , SARS-CoV-2/immunology , Adult , Female , Germany/epidemiology , Hospitals, Pediatric , Humans , Male , Middle Aged , Risk Assessment , Seroepidemiologic Studies
4.
Kidney Int Rep ; 6(4): 905-915, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1169160

ABSTRACT

INTRODUCTION: Acute kidney injury (AKI) is an important complication in COVID-19, but its precise etiology has not fully been elucidated. Insights into AKI mechanisms may be provided by analyzing the temporal associations of clinical parameters reflecting disease processes and AKI development. METHODS: We performed an observational cohort study of 223 consecutive COVID-19 patients treated at 3 sites of a tertiary care referral center to describe the evolvement of severe AKI (Kidney Disease: Improving Global Outcomes stage 3) and identify conditions promoting its development. Descriptive statistics and explanatory multivariable Cox regression modeling with clinical parameters as time-varying covariates were used to identify risk factors of severe AKI. RESULTS: Severe AKI developed in 70 of 223 patients (31%) with COVID-19, of which 95.7% required kidney replacement therapy. Patients with severe AKI were older, predominantly male, had more comorbidities, and displayed excess mortality. Severe AKI occurred exclusively in intensive care unit patients, and 97.3% of the patients developing severe AKI had respiratory failure. Mechanical ventilation, vasopressor therapy, and inflammatory markers (serum procalcitonin levels and leucocyte count) were independent time-varying risk factors of severe AKI. Increasing inflammatory markers displayed a close temporal association with the development of severe AKI. Sensitivity analysis on risk factors of AKI stage 2 and 3 combined confirmed these findings. CONCLUSION: Severe AKI in COVID-19 was tightly coupled with critical illness and systemic inflammation and was not observed in milder disease courses. These findings suggest that traditional systemic AKI mechanisms rather than kidney-specific processes contribute to severe AKI in COVID-19.

5.
Rofo ; 193(8): 937-946, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1139768

ABSTRACT

OBJECTIVES: As a cross-section discipline within the hospital infrastructure, radiological departments might be able to provide important information regarding the impact of the COVID-19 pandemic on healthcare. The goal of this study was to quantify changes in medical care during the first wave of the pandemic using radiological examinations as a comprehensive surrogate marker and to determine potential future workload. METHODS: A retrospective analysis of all radiological examinations during the first wave of the pandemic was performed. The number of examinations was compared to time-matched control periods. Furthermore, an in-depth analysis of radiological examinations attributed to various medical specialties was conducted and postponed examinations were extrapolated to calculate additional workload in the near future. RESULTS: A total of 596,760 examinations were analyzed. Overall case volumes decreased by an average of 41 % during the shutdown compared to the control period. The most affected radiological modalities were sonography (-54 %), X-ray (-47 %) followed by MRI (-42 %). The most affected medical specialty was trauma and orthopedics (-60 % case volume) followed by general surgery (-49 %). Examination numbers increased during the post-shutdown period leading to a predicted additional workload of up to 22 %. CONCLUSION: This study shows a marked decrease in radiological examinations in total and among several core medical specialties, indicating a significant reduction in medical care during the first COVID-19 shutdown. KEY POINTS: · Number of radiological examinations decreased by 41 % during the first wave of the COVID-19 pandemic.. · Several core medical specialties were heavily affected with a reduction of case volumes up to 60 %.. · When extrapolating postponed examinations to the near future, the overall workload for radiological departments might increase up to 22 %.. CITATION FORMAT: · Fleckenstein FN, Maleitzke T, Böning G et al. Decreased Medical Care During the COVID-19 Pandemic - A Comprehensive Analysis of Radiological Examinations. Fortschr Röntgenstr 2021; 193: 937 - 946.


Subject(s)
COVID-19 , Pandemics , Radiography , Radiology Department, Hospital , Radiology , Workload , Delivery of Health Care , Humans , Orthopedics , Radiography/trends , Radiology/trends , Retrospective Studies
7.
Diagnostics (Basel) ; 10(11)2020 Nov 10.
Article in English | MEDLINE | ID: covidwho-918181

ABSTRACT

Computed tomography (CT) plays an important role in the diagnosis of COVID-19. The aim of this study was to evaluate a simple, semi-quantitative method that can be used for identifying patients in need of subsequent intensive care unit (ICU) treatment and intubation. We retrospectively analyzed the initial CT scans of 28 patients who tested positive for SARS-CoV-2 at our Level-I center. The extent of lung involvement on CT was classified both subjectively and with a simple semi-quantitative method measuring the affected area at three lung levels. Competing risks Cox regression was used to identify factors associated with the time to ICU admission and intubation. Their potential diagnostic ability was assessed with receiver operating characteristic (ROC)/area under the ROC curves (AUC) analysis. A 10% increase in the affected lung parenchyma area increased the instantaneous risk of intubation (hazard ratio (HR) = 2.00) and the instantaneous risk of ICU admission (HR 1.73). The semi-quantitative measurement outperformed the subjective assessment diagnostic ability (AUC = 85.6% for ICU treatment, 71.9% for intubation). This simple measurement of the involved lung area in initial CT scans of COVID-19 patients may allow early identification of patients in need of ICU treatment/intubation and thus help make optimal use of limited ICU/ventilation resources in hospitals.

SELECTION OF CITATIONS
SEARCH DETAIL