Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
JAMA Netw Open ; 6(5): e2310650, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-2317193

ABSTRACT

Importance: Estimates of the rate of waning of vaccine effectiveness (VE) against COVID-19 are key to assess population levels of protection and future needs for booster doses to face the resurgence of epidemic waves. Objective: To quantify the progressive waning of VE associated with the Delta and Omicron variants of SARS-CoV-2 by number of received doses. Data Sources: PubMed and Web of Science were searched from the databases' inception to October 19, 2022, as well as reference lists of eligible articles. Preprints were included. Study Selection: Selected studies for this systematic review and meta-analysis were original articles reporting estimates of VE over time against laboratory-confirmed SARS-CoV-2 infection and symptomatic disease. Data Extraction and Synthesis: Estimates of VE at different time points from vaccination were retrieved from original studies. A secondary data analysis was performed to project VE at any time from last dose administration, improving the comparability across different studies and between the 2 considered variants. Pooled estimates were obtained from random-effects meta-analysis. Main Outcomes and Measures: Outcomes were VE against laboratory-confirmed Omicron or Delta infection and symptomatic disease and half-life and waning rate associated with vaccine-induced protection. Results: A total of 799 original articles and 149 reviews published in peer-reviewed journals and 35 preprints were identified. Of these, 40 studies were included in the analysis. Pooled estimates of VE of a primary vaccination cycle against laboratory-confirmed Omicron infection and symptomatic disease were both lower than 20% at 6 months from last dose administration. Booster doses restored VE to levels comparable to those acquired soon after the administration of the primary cycle. However, 9 months after booster administration, VE against Omicron was lower than 30% against laboratory-confirmed infection and symptomatic disease. The half-life of VE against symptomatic infection was estimated to be 87 days (95% CI, 67-129 days) for Omicron compared with 316 days (95% CI, 240-470 days) for Delta. Similar waning rates of VE were found for different age segments of the population. Conclusions and Relevance: These findings suggest that the effectiveness of COVID-19 vaccines against laboratory-confirmed Omicron or Delta infection and symptomatic disease rapidly wanes over time after the primary vaccination cycle and booster dose. These results can inform the design of appropriate targets and timing for future vaccination programs.


Subject(s)
COVID-19 , Hepatitis D , Humans , COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2
2.
Sci Rep ; 13(1): 5586, 2023 04 05.
Article in English | MEDLINE | ID: covidwho-2259910

ABSTRACT

The worldwide inequitable access to vaccination claims for a re-assessment of policies that could minimize the COVID-19 burden in low-income countries. Nine months after the launch of the national vaccination program in March 2021, only 3.4% of the Ethiopian population received two doses of COVID-19 vaccine. We used a SARS-CoV-2 transmission model to estimate the level of immunity accrued before the launch of vaccination in the Southwest Shewa Zone (SWSZ) and to evaluate the impact of alternative age priority vaccination targets in a context of limited vaccine supply. The model was informed with available epidemiological evidence and detailed contact data collected across different geographical settings (urban, rural, or remote). We found that, during the first year of the pandemic, the mean proportion of critical cases occurred in SWSZ attributable to infectors under 30 years of age would range between 24.9 and 48.0%, depending on the geographical setting. During the Delta wave, the contribution of this age group in causing critical cases was estimated to increase on average to 66.7-70.6%. Our findings suggest that, when considering the vaccine product available at the time (ChAdOx1 nCoV-19; 65% efficacy against infection after 2 doses), prioritizing the elderly for vaccination remained the best strategy to minimize the disease burden caused by Delta, irrespectively of the number of available doses. Vaccination of all individuals aged ≥ 50 years would have averted 40 (95%PI: 18-60), 90 (95%PI: 61-111), and 62 (95%PI: 21-108) critical cases per 100,000 residents in urban, rural, and remote areas, respectively. Vaccination of all individuals aged ≥ 30 years would have averted an average of 86-152 critical cases per 100,000 individuals, depending on the setting considered. Despite infections among children and young adults likely caused 70% of critical cases during the Delta wave in SWSZ, most vulnerable ages should remain a key priority target for vaccination against COVID-19.


Subject(s)
COVID-19 , Vaccines , Child , Aged , Young Adult , Humans , Adult , COVID-19 Vaccines , Ethiopia , ChAdOx1 nCoV-19 , SARS-CoV-2 , Vaccination
3.
China CDC Wkly ; 5(5): 113-119, 2023 Feb 03.
Article in English | MEDLINE | ID: covidwho-2268993

ABSTRACT

Introduction: Previous studies have demonstrated significant changes in social contacts during the first-wave coronavirus disease 2019 (COVID-19) in Chinese mainland. The purpose of this study was to quantify the time-varying contact patterns by age in Chinese mainland in 2020 and evaluate their impact on the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: Diary-based contact surveys were performed for four periods: baseline (prior to 2020), outbreak (February 2020), post-lockdown (March-May 2020), and post-epidemic (September-November 2020). We built a Susceptible-Infected-Recovered (SIR) model to evaluate the effect of reducing contacts on transmission. Results: During the post-epidemic period, daily contacts resumed to 26.7%, 14.8%, 46.8%, and 44.2% of the pre-COVID levels in Wuhan, Shanghai, Shenzhen, and Changsha, respectively. This suggests a moderate risk of resurgence in Changsha, Shenzhen, and Wuhan, and a low risk in Shanghai. School closure alone was not enough to interrupt transmission of SARS-CoV-2 Omicron BA.5, but with the addition of a 75% reduction of contacts at the workplace, it could lead to a 16.8% reduction of the attack rate. To control an outbreak, concerted strategies that target schools, workplaces, and community contacts are needed. Discussion: Monitoring contact patterns by age is key to quantifying the risk of COVID-19 outbreaks and evaluating the impact of intervention strategies.

4.
China CDC Wkly ; 5(5): 97-102, 2023 Feb 03.
Article in English | MEDLINE | ID: covidwho-2288869

ABSTRACT

What is already known about this topic?: Previous studies have explored the spatial transmission patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and have assessed the associated risk factors. However, none of these studies have quantitatively described the spatiotemporal transmission patterns and risk factors for Omicron BA.2 at the micro (within-city) scale. What is added by this report?: This study highlights the heterogeneous spread of the 2022 Omicron BA.2 epidemic in Shanghai, and identifies associations between different metrics of spatial spread at the subdistrict level and demographic and socioeconomic characteristics of the population, human mobility patterns, and adopted interventions. What are the implications for public health practice?: Disentangling different risk factors might contribute to a deeper understanding of the transmission dynamics and ecology of coronavirus disease 2019 and an effective design of monitoring and management strategies.

5.
Epidemiol Infect ; 151: e5, 2022 12 16.
Article in English | MEDLINE | ID: covidwho-2243074

ABSTRACT

Quantitative information on epidemiological quantities such as the incubation period and generation time of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is scarce. We analysed a dataset collected during contact tracing activities in the province of Reggio Emilia, Italy, throughout 2021. We determined the distributions of the incubation period for the Alpha and Delta variants using information on negative polymerase chain reaction tests and the date of last exposure from 282 symptomatic cases. We estimated the distributions of the intrinsic generation time using a Bayesian inference approach applied to 9724 SARS-CoV-2 cases clustered in 3545 households where at least one secondary case was recorded. We estimated a mean incubation period of 4.9 days (95% credible intervals, CrI, 4.4-5.4) for Alpha and 4.5 days (95% CrI 4.0-5.0) for Delta. The intrinsic generation time was estimated to have a mean of 7.12 days (95% CrI 6.27-8.44) for Alpha and of 6.52 days (95% CrI 5.54-8.43) for Delta. The household serial interval was 2.43 days (95% CrI 2.29-2.58) for Alpha and 2.74 days (95% CrI 2.62-2.88) for Delta, and the estimated proportion of pre-symptomatic transmission was 48-51% for both variants. These results indicate limited differences in the incubation period and intrinsic generation time of SARS-CoV-2 variants Alpha and Delta compared to ancestral lineages.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Contact Tracing , Bayes Theorem , Infectious Disease Incubation Period
6.
China CDC Wkly ; 5(3): 56-62, 2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2242916

ABSTRACT

What is already known about this topic?: Little is known about the epidemiology, natural history, and transmission patterns of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant. Monitoring the evolution of viral fitness of SARS-CoV-2 in the host population is key for preparedness and response planning. What is added by this report?: We analyzed a successfully contained local outbreak of Delta that took place in Hunan, China, and provided estimates of time-to-key event periods, infectiousness over time, and risk factors for SARS-CoV-2 infection and transmission for a still poorly understood variant. What are the implications for public health practice?: Our findings simultaneously shed light on both the characteristics of the Delta variant, by identifying key age groups, risk factors, and transmission pathways, and planning a future response effort against SARS-CoV-2.

7.
Influenza Other Respir Viruses ; 2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2232948

ABSTRACT

BACKGROUND: School closures and distance learning have been extensively adopted to counter the COVID-19 pandemic. However, the contribution of school transmission to the spread of SARS-CoV-2 remains poorly quantified. METHODS: We analyzed transmission patterns associated with 976 SARS-CoV-2 exposure events, involving 460 positive individuals, as identified in early 2021 through routine surveillance and an extensive screening conducted on students, school personnel, and their household members in a small Italian municipality. In addition to population screenings and contact-tracing operations, reactive closures of class and schools were implemented. RESULTS: From the analysis of 152 clear infection episodes and 584 exposure events identified by epidemiological investigations, we estimated that approximately 50%, 21%, and 29% of SARS-CoV-2 transmission was associated with household, school, and community contacts, respectively. We found substantial transmission heterogeneities, with 20% positive individuals causing 75% to 80% of ascertained infection episodes. A higher proportion of infected individuals causing onward transmission was found among students (46.2% vs. 25%, on average), who also caused a markedly higher number of secondary cases (mean: 1.03 vs. 0.35). By reconstructing likely transmission chains from the entire set of exposures identified during contact-tracing operations, we found that clusters originated from students or school personnel were associated with a larger average cluster size (3.32 vs. 1.15) and a larger average number of generations in the transmission chain (1.56 vs. 1.17). CONCLUSIONS: Uncontrolled SARS-CoV-2 transmission at school could disrupt the regular conduct of teaching activities, likely seeding the transmission into other settings, and increasing the burden on contact-tracing operations.

8.
Euro Surveill ; 27(45)2022 11.
Article in English | MEDLINE | ID: covidwho-2117835

ABSTRACT

BackgroundThe SARS-CoV-2 variant of concern Omicron was first detected in Italy in November 2021.AimTo comprehensively describe Omicron spread in Italy in the 2 subsequent months and its impact on the overall SARS-CoV-2 circulation at population level.MethodsWe analyse data from four genomic surveys conducted across the country between December 2021 and January 2022. Combining genomic sequencing results with epidemiological records collated by the National Integrated Surveillance System, the Omicron reproductive number and exponential growth rate are estimated, as well as SARS-CoV-2 transmissibility.ResultsOmicron became dominant in Italy less than 1 month after its first detection, representing on 3 January 76.9-80.2% of notified SARS-CoV-2 infections, with a doubling time of 2.7-3.3 days. As of 17 January 2022, Delta variant represented < 6% of cases. During the Omicron expansion in December 2021, the estimated mean net reproduction numbers respectively rose from 1.15 to a maximum of 1.83 for symptomatic cases and from 1.14 to 1.36 for hospitalised cases, while remaining relatively stable, between 0.93 and 1.21, for cases needing intensive care. Despite a reduction in relative proportion, Delta infections increased in absolute terms throughout December contributing to an increase in hospitalisations. A significant reproduction numbers' decline was found after mid-January, with average estimates dropping below 1 between 10 and 16 January 2022.ConclusionEstimates suggest a marked growth advantage of Omicron compared with Delta variant, but lower disease severity at population level possibly due to residual immunity against severe outcomes acquired from vaccination and prior infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Vaccination , Base Sequence
9.
BMC Med ; 20(1): 442, 2022 11 15.
Article in English | MEDLINE | ID: covidwho-2115840

ABSTRACT

BACKGROUND: The SARS-CoV-2 containment strategy has been successful in mainland China prior to the emergence of Omicron. However, in the era of highly transmissible variants, whether it is possible for China to sustain a local containment policy and under what conditions China could transition away from it are of paramount importance at the current stage of the pandemic. METHODS: We developed a spatially structured, fully stochastic, individual-based SARS-CoV-2 transmission model to evaluate the feasibility of sustaining SARS-CoV-2 local containment in mainland China considering the Omicron variants, China's current immunization level, and nonpharmaceutical interventions (NPIs). We also built a statistical model to estimate the overall disease burden under various hypothetical mitigation scenarios. RESULTS: We found that due to high transmissibility, neither Omicron BA.1 nor BA.2 could be contained by China's pre-Omicron NPI strategies which were successful prior to the emergence of the Omicron variants. However, increased intervention intensity, such as enhanced population mobility restrictions and multi-round mass testing, could lead to containment success. We estimated that an acute Omicron epidemic wave in mainland China would result in significant number of deaths if China were to reopen under current vaccine coverage with no antiviral uptake, while increasing vaccination coverage and antiviral uptake could substantially reduce the disease burden. CONCLUSIONS: As China's current vaccination has yet to reach high coverage in older populations, NPIs remain essential tools to maintain low levels of infection while building up protective population immunity, ensuring a smooth transition out of the pandemic phase while minimizing the overall disease burden.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Aged , SARS-CoV-2/genetics , Feasibility Studies , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology
10.
Emerg Microbes Infect ; 11(1): 2800-2807, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2062777

ABSTRACT

An outbreak of COVID-19 caused by the SARS-CoV-2 Omicron BA.2 sublineage occurred in Shanghai, China from February 26 to June 30, 2022. We use official reported data retrieved from Shanghai municipal Health Commissions to estimate the incidence of infections, severe/critical infections, and deaths to assess the disease burden. By adjusting for right censoring and RT-PCR sensitivity, we provide estimates of clinical severity, including the infection fatality ratio, symptomatic case fatality ratio, and risk of developing severe/critical disease upon infection. The overall infection rate, severe/critical infection rate, and mortality rate were 2.74 (95% CI: 2.73-2.74) per 100 individuals, 6.34 (95% CI: 6.02-6.66) per 100,000 individuals and 2.42 (95% CI: 2.23-2.62) per 100,000 individuals, respectively. The severe/critical infection rate and mortality rate increased with age, noted in individuals aged 80 years or older. The overall fatality ratio and risk of developing severe/critical disease upon infection were 0.09% (95% CI: 0.09-0.10%) and 0.27% (95% CI: 0.24-0.29%), respectively. Having received at least one vaccine dose led to a 10-fold reduction in the risk of death for infected individuals aged 80 years or older. Under the repeated population-based screenings and strict intervention policies implemented in Shanghai, our results found a lower disease burden and mortality of the outbreak compared to other settings and countries, showing the impact of the successful outbreak containment in Shanghai. The estimated low clinical severity of this Omicron BA.2 epidemic in Shanghai highlight the key contribution of vaccination and availability of hospital beds to reduce the risk of death.


Subject(s)
COVID-19 , Humans , Aged, 80 and over , SARS-CoV-2 , China/epidemiology , Cost of Illness , Disease Outbreaks
11.
Lancet Reg Health West Pac ; 29: 100592, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2007928

ABSTRACT

Background: In early March 2022, a major outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant spread rapidly throughout Shanghai, China. Here we aimed to provide a description of the epidemiological characteristics and spatiotemporal transmission dynamics of the Omicron outbreak under the population-based screening and lockdown policies implemented in Shanghai. Methods: We extracted individual information on SARS-CoV-2 infections reported between January 1 and May 31, 2022, and on the timeline of the adopted non-pharmaceutical interventions. The epidemic was divided into three phases: i) sporadic infections (January 1-February 28), ii) local transmission (March 1-March 31), and iii) city-wide lockdown (April 1 to May 31). We described the epidemic spread during these three phases and the subdistrict-level spatiotemporal distribution of the infections. To evaluate the impact on the transmission of SARS-CoV-2 of the adopted targeted interventions in Phase 2 and city-wide lockdown in Phase 3, we estimated the dynamics of the net reproduction number (Rt ). Findings: A surge in imported infections in Phase 1 triggered cryptic local transmission of the Omicron variant in early March, resulting in the largest outbreak in mainland China since the original wave. A total of 626,000 SARS-CoV-2 infections were reported in 99.5% (215/216) of the subdistricts of Shanghai until the end of May. The spatial distribution of the infections was highly heterogeneous, with 37% of the subdistricts accounting for 80% of all infections. A clear trend from the city center towards adjacent suburban and rural areas was observed, with a progressive slowdown of the epidemic spread (from 463 to 244 meters/day) prior to the citywide lockdown. During Phase 2, Rt remained well above 1 despite the implementation of multiple targeted interventions. The citywide lockdown imposed on April 1 led to a marked decrease in transmission, bringing Rt below the epidemic threshold in the entire city on April 14 and ultimately leading to containment of the outbreak. Interpretation: Our results highlight the risk of widespread outbreaks in mainland China, particularly under the heightened pressure of imported infections. The targeted interventions adopted in March 2022 were not capable of halting transmission, and the implementation of a strict, prolonged city-wide lockdown was needed to successfully contain the outbreak, highlighting the challenges for containing Omicron outbreaks. Funding: Key Program of the National Natural Science Foundation of China (82130093); Shanghai Rising-Star Program (22QA1402300).

12.
Nat Commun ; 13(1): 4910, 2022 08 20.
Article in English | MEDLINE | ID: covidwho-2000889

ABSTRACT

Appropriate isolation guidelines for COVID-19 patients are warranted. Currently, isolating for fixed time is adopted in most countries. However, given the variability in viral dynamics between patients, some patients may no longer be infectious by the end of isolation, whereas others may still be infectious. Utilizing viral test results to determine isolation length would minimize both the risk of prematurely ending isolation of infectious patients and the unnecessary individual burden of redundant isolation of noninfectious patients. In this study, we develop a data-driven computational framework to compute the population-level risk and the burden of different isolation guidelines with rapid antigen tests (i.e., lateral flow tests). Here, we show that when the detection limit is higher than the infectiousness threshold values, additional consecutive negative results are needed to ascertain infectiousness status. Further, rapid antigen tests should be designed to have lower detection limits than infectiousness threshold values to minimize the length of prolonged isolation.


Subject(s)
COVID-19 , COVID-19/diagnosis , Humans , SARS-CoV-2
13.
Lancet Reg Health Eur ; 19: 100446, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1914781

ABSTRACT

Background: Starting from the final months of 2021, the SARS-CoV-2 Omicron variant expanded globally, swiftly replacing Delta, the variant that was dominant at the time. Many uncertainties remain about the epidemiology of Omicron; here, we aim to estimate its generation time. Methods: We used a Bayesian approach to analyze 23,122 SARS-CoV-2 infected individuals clustered in 8903 households as determined from contact tracing operations in Reggio Emilia, Italy, throughout January 2022. We estimated the distribution of the intrinsic generation time (the time between the infection dates of an infector and its secondary cases in a fully susceptible population), realized household generation time, realized serial interval (time between symptom onset of an infector and its secondary cases), and contribution of pre-symptomatic transmission. Findings: We estimated a mean intrinsic generation time of 6.84 days (95% credible intervals, CrI, 5.72-8.60), and a mean realized household generation time of 3.59 days (95%CrI: 3.55-3.60). The household serial interval was 2.38 days (95%CrI 2.30-2.47) with about 51% (95%CrI 45-56%) of infections caused by symptomatic individuals being generated before symptom onset. Interpretation: These results indicate that the intrinsic generation time of the SARS-CoV-2 Omicron variant might not have shortened as compared to previous estimates on ancestral lineages, Alpha and Delta, in the same geographic setting. Like for previous lineages, pre-symptomatic transmission appears to play a key role for Omicron transmission. Estimates in this study may be useful to design quarantine, isolation and contact tracing protocols and to support surveillance (e.g., for the accurate computation of reproduction numbers). Funding: The study was partially funded by EU grant 874850 MOOD.

14.
BMC Infect Dis ; 22(1): 483, 2022 May 21.
Article in English | MEDLINE | ID: covidwho-1902359

ABSTRACT

BACKGROUND: Contact patterns play a key role in the spread of respiratory infectious diseases in human populations. During the COVID-19 pandemic, the regular contact patterns of the population have been disrupted due to social distancing both imposed by the authorities and individual choices. Many studies have focused on age-mixing patterns before the COVID-19 pandemic, but they provide very little information about the mixing patterns in the COVID-19 era. In this study, we aim at quantifying human heterogeneous mixing patterns immediately after lockdowns implemented to contain COVID-19 spread in China were lifted. We also provide an illustrative example of how the collected mixing patterns can be used in a simulation study of SARS-CoV-2 transmission. METHODS AND RESULTS: In this work, a contact survey was conducted in Chinese provinces outside Hubei in March 2020, right after lockdowns were lifted. We then leveraged the estimated mixing patterns to calibrate a mathematical model of SARS-CoV-2 transmission. Study participants reported 2.3 contacts per day (IQR: 1.0-3.0) and the mean per-contact duration was 7.0 h (IQR: 1.0-10.0). No significant differences in average contact number and contact duration were observed between provinces, the number of recorded contacts did not show a clear trend by age, and most of the recorded contacts occurred with family members (about 78%). The simulation study highlights the importance of considering age-specific contact patterns to estimate the COVID-19 burden. CONCLUSIONS: Our findings suggest that, despite lockdowns were no longer in place at the time of the survey, people were still heavily limiting their contacts as compared to the pre-pandemic situation.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Communicable Disease Control , Humans , Pandemics , Physical Distancing
15.
Epidemics ; 40: 100601, 2022 09.
Article in English | MEDLINE | ID: covidwho-1895034

ABSTRACT

BACKGROUND: After a rapid upsurge of COVID-19 cases in Italy during the fall of 2020, the government introduced a three-tiered restriction system aimed at increasing physical distancing. The Ministry of Health, after periodic epidemiological risk assessments, assigned a tier to each of the 21 Italian regions and autonomous provinces. It is still unclear to what extent these different sets of measures altered the number of daily interactions and the social mixing patterns. METHODS AND FINDINGS: We conducted a survey between July 2020 and March 2021 to monitor changes in social contact patterns among individuals in the metropolitan city of Milan, Italy, which was hardly hit by the second wave of the COVID-19 pandemic. The number of daily contacts during periods characterized by different levels of restrictions was analyzed through negative binomial regression models and age-specific contact matrices were estimated under the different tiers of restrictions. By relying on the empirically estimated mixing patterns, we quantified relative changes in SARS-CoV-2 transmission potential associated with the different tiers. As tighter restrictions were implemented during the fall of 2020, a progressive reduction in the mean number of daily contacts recorded by study participants was observed: from 15.9 % under mild restrictions (yellow tier), to 41.8 % under strong restrictions (red tier). Higher restrictions levels were also found to increase the relative contribution of contacts occurring within the household. The SARS-CoV-2 reproduction number was estimated to decrease by 17.1 % (95 %CI: 1.5-30.1), 25.1 % (95 %CI: 13.0-36.0) and 44.7 % (95 %CI: 33.9-53.0) under the yellow, orange, and red tiers, respectively. CONCLUSIONS: Our results give an important quantification of the expected contribution of different restriction levels in shaping social contacts and decreasing the transmission potential of SARS-CoV-2. These estimates can find an operational use in anticipating the effect that the implementation of these tiered restriction can have on SARS-CoV-2 reproduction number under an evolving epidemiological situation.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Family Characteristics , Humans , Pandemics , Surveys and Questionnaires
16.
Proc Natl Acad Sci U S A ; 119(26): e2112182119, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1890404

ABSTRACT

Detailed characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission across different settings can help design less disruptive interventions. We used real-time, privacy-enhanced mobility data in the New York City, NY and Seattle, WA metropolitan areas to build a detailed agent-based model of SARS-CoV-2 infection to estimate the where, when, and magnitude of transmission events during the pandemic's first wave. We estimate that only 18% of individuals produce most infections (80%), with about 10% of events that can be considered superspreading events (SSEs). Although mass gatherings present an important risk for SSEs, we estimate that the bulk of transmission occurred in smaller events in settings like workplaces, grocery stores, or food venues. The places most important for transmission change during the pandemic and are different across cities, signaling the large underlying behavioral component underneath them. Our modeling complements case studies and epidemiological data and indicates that real-time tracking of transmission events could help evaluate and define targeted mitigation policies.


Subject(s)
COVID-19 , Contact Tracing , SARS-CoV-2 , COVID-19/transmission , Humans , New York City/epidemiology , Pandemics , Population Dynamics , Time Factors , Washington/epidemiology
17.
PLoS Comput Biol ; 18(5): e1010146, 2022 05.
Article in English | MEDLINE | ID: covidwho-1865329

ABSTRACT

We analyze the effectiveness of the first six months of vaccination campaign against SARS-CoV-2 in Italy by using a computational epidemic model which takes into account demographic, mobility, vaccines data, as well as estimates of the introduction and spreading of the more transmissible Alpha variant. We consider six sub-national regions and study the effect of vaccines in terms of number of averted deaths, infections, and reduction in the Infection Fatality Rate (IFR) with respect to counterfactual scenarios with the actual non-pharmaceuticals interventions but no vaccine administration. Furthermore, we compare the effectiveness in counterfactual scenarios with different vaccines allocation strategies and vaccination rates. Our results show that, as of 2021/07/05, vaccines averted 29, 350 (IQR: [16, 454-42, 826]) deaths and 4, 256, 332 (IQR: [1, 675, 564-6, 980, 070]) infections and a new pandemic wave in the country. During the same period, they achieved a -22.2% (IQR: [-31.4%; -13.9%]) IFR reduction. We show that a campaign that would have strictly prioritized age groups at higher risk of dying from COVID-19, besides frontline workers and the fragile population, would have implied additional benefits both in terms of avoided fatalities and reduction in the IFR. Strategies targeting the most active age groups would have prevented a higher number of infections but would have been associated with more deaths. Finally, we study the effects of different vaccination intake scenarios by rescaling the number of available doses in the time period under study to those administered in other countries of reference. The modeling framework can be applied to other countries to provide a mechanistic characterization of vaccination campaigns worldwide.


Subject(s)
COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunization Programs , Italy/epidemiology , SARS-CoV-2 , Vaccination
18.
Nat Med ; 28(7): 1468-1475, 2022 07.
Article in English | MEDLINE | ID: covidwho-1830085

ABSTRACT

Having adopted a dynamic zero-COVID strategy to respond to SARS-CoV-2 variants with higher transmissibility since August 2021, China is now considering whether, and for how long, this policy can remain in place. The debate has thus shifted towards the identification of mitigation strategies for minimizing disruption to the healthcare system in the case of a nationwide epidemic. To this aim, we developed an age-structured stochastic compartmental susceptible-latent-infectious-removed-susceptible model of SARS-CoV-2 transmission calibrated on the initial growth phase for the 2022 Omicron outbreak in Shanghai, to project COVID-19 burden (that is, number of cases, patients requiring hospitalization and intensive care, and deaths) under hypothetical mitigation scenarios. The model also considers age-specific vaccine coverage data, vaccine efficacy against different clinical endpoints, waning of immunity, different antiviral therapies and nonpharmaceutical interventions. We find that the level of immunity induced by the March 2022 vaccination campaign would be insufficient to prevent an Omicron wave that would result in exceeding critical care capacity with a projected intensive care unit peak demand of 15.6 times the existing capacity and causing approximately 1.55 million deaths. However, we also estimate that protecting vulnerable individuals by ensuring accessibility to vaccines and antiviral therapies, and maintaining implementation of nonpharmaceutical interventions could be sufficient to prevent overwhelming the healthcare system, suggesting that these factors should be points of emphasis in future mitigation policies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents , COVID-19/epidemiology , China/epidemiology , Humans
19.
Emerg Microbes Infect ; 11(1): 1205-1214, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1774288

ABSTRACT

SARS-CoV-2 infection causes most cases of severe illness and fatality in older age groups. Over 92% of the Chinese population aged ≥12 years has been fully vaccinated against COVID-19 (albeit with vaccines developed against historical lineages). At the end of October 2021, the vaccination programme has been extended to children aged 3-11 years. Here, we aim to assess whether, in this vaccination landscape, the importation of Delta variant infections could shift COVID-19 burden from adults to children. We developed an age-structured susceptible-infectious-removed model of SARS-CoV-2 transmission to simulate epidemics triggered by the importation of Delta variant infections and project the age-specific incidence of SARS-CoV-2 infections, cases, hospitalizations, intensive care unit admissions, and deaths. In the context of the vaccination programme targeting individuals aged ≥12 years, and in the absence of non-pharmaceutical interventions, the importation of Delta variant infections could have led to widespread transmission and substantial disease burden in mainland China, even with vaccination coverage as high as 89% across the eligible age groups. Extending the vaccination roll-out to include children aged 3-11 years (as it was the case since the end of October 2021) is estimated to dramatically decrease the burden of symptomatic infections and hospitalizations within this age group (39% and 68%, respectively, when considering a vaccination coverage of 87%), but would have a low impact on protecting infants. Our findings highlight the importance of including children among the target population and the need to strengthen vaccination efforts by increasing vaccine effectiveness.


Subject(s)
COVID-19 , Vaccines , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Child , China/epidemiology , Humans , Infant , SARS-CoV-2 , Vaccination
20.
Clin Infect Dis ; 74(5): 893-896, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1703879

ABSTRACT

We analyzed 221 coronavirus disease 2019 cases identified between June 2020 and January 2021 in 6074 individuals screened for immunoglobulin G antibodies in May 2020, representing 77% of residents of 5 Italian municipalities. The relative risk of developing symptomatic infection in seropositive participants was 0.055 (95% confidence interval, .014-.220).


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Immunoglobulin G , Reinfection
SELECTION OF CITATIONS
SEARCH DETAIL