Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Tegally, Houriiyah, San, James, Cotten, Matthew, Tegomoh, Bryan, Mboowa, Gerald, Martin, Darren, Baxter, Cheryl, Moir, Monika, Lambisia, Arnold, Diallo, Amadou, Amoako, Daniel, Diagne, Moussa, Sisay, Abay, Zekri, Abdel-Rahman, Barakat, Abdelhamid, Gueye, Abdou Salam, Sangare, Abdoul, Ouedraogo, Abdoul-Salam, Sow, Abdourahmane, Musa, Abdualmoniem, Sesay, Abdul, Lagare, Adamou, Kemi, Adedotun-Sulaiman, Abar, Aden Elmi, Johnson, Adeniji, Fowotade, Adeola, Olubusuyi, Adewumi, Oluwapelumi, Adeyemi, Amuri, Adrienne, Juru, Agnes, Ramadan, Ahmad Mabrouk, Kandeil, Ahmed, Mostafa, Ahmed, Rebai, Ahmed, Sayed, Ahmed, Kazeem, Akano, Balde, Aladje, Christoffels, Alan, Trotter, Alexander, Campbell, Allan, Keita, Alpha Kabinet, Kone, Amadou, Bouzid, Amal, Souissi, Amal, Agweyu, Ambrose, Gutierrez, Ana, Page, Andrew, Yadouleton, Anges, Vinze, Anika, Happi, Anise, Chouikha, Anissa, Iranzadeh, Arash, Maharaj, Arisha, Batchi-Bouyou, Armel Landry, Ismail, Arshad, Sylverken, Augustina, Goba, Augustine, Femi, Ayoade, Sijuwola, Ayotunde Elijah, Ibrahimi, Azeddine, Marycelin, Baba, Salako, Babatunde Lawal, Oderinde, Bamidele, Bolajoko, Bankole, Dhaala, Beatrice, Herring, Belinda, Tsofa, Benjamin, Mvula, Bernard, Njanpop-Lafourcade, Berthe-Marie, Marondera, Blessing, Khaireh, Bouh Abdi, Kouriba, Bourema, Adu, Bright, Pool, Brigitte, McInnis, Bronwyn, Brook, Cara, Williamson, Carolyn, Anscombe, Catherine, Pratt, Catherine, Scheepers, Cathrine, Akoua-Koffi, Chantal, Agoti, Charles, Loucoubar, Cheikh, Onwuamah, Chika Kingsley, Ihekweazu, Chikwe, Malaka, Christian Noël, Peyrefitte, Christophe, Omoruyi, Chukwuma Ewean, Rafaï, Clotaire Donatien, Morang’a, Collins, Nokes, James, Lule, Daniel Bugembe, Bridges, Daniel, Mukadi-Bamuleka, Daniel, Park, Danny, Baker, David, Doolabh, Deelan, Ssemwanga, Deogratius, Tshiabuila, Derek, Bassirou, Diarra, Amuzu, Dominic S. Y.; Goedhals, Dominique, Grant, Donald, Omuoyo, Donwilliams, Maruapula, Dorcas, Wanjohi, Dorcas Waruguru, Foster-Nyarko, Ebenezer, Lusamaki, Eddy, Simulundu, Edgar, Ong’era, Edidah, Ngabana, Edith, Abworo, Edward, Otieno, Edward, Shumba, Edwin, Barasa, Edwine, Ahmed, El Bara, Kampira, Elizabeth, Fahime, Elmostafa El, Lokilo, Emmanuel, Mukantwari, Enatha, Cyril, Erameh, Philomena, Eromon, Belarbi, Essia, Simon-Loriere, Etienne, Anoh, Etilé, Leendertz, Fabian, Taweh, Fahn, Wasfi, Fares, Abdelmoula, Fatma, Takawira, Faustinos, Derrar, Fawzi, Ajogbasile, Fehintola, Treurnicht, Florette, Onikepe, Folarin, Ntoumi, Francine, Muyembe, Francisca, Ngiambudulu, Francisco, Zongo Ragomzingba, Frank Edgard, Dratibi, Fred Athanasius, Iyanu, Fred-Akintunwa, Mbunsu, Gabriel, Thilliez, Gaetan, Kay, Gemma, Akpede, George, George, Uwem, van Zyl, Gert, Awandare, Gordon, Schubert, Grit, Maphalala, Gugu, Ranaivoson, Hafaliana, Lemriss, Hajar, Omunakwe, Hannah, Onywera, Harris, Abe, Haruka, Karray, Hela, Nansumba, Hellen, Triki, Henda, Adje Kadjo, Herve Albéric, Elgahzaly, Hesham, Gumbo, Hlanai, mathieu, Hota, Kavunga-Membo, Hugo, Smeti, Ibtihel, Olawoye, Idowu, Adetifa, Ifedayo, Odia, Ikponmwosa, Boubaker, Ilhem Boutiba-Ben, Ssewanyana, Isaac, Wurie, Isatta, Konstantinus, Iyaloo, Afiwa Halatoko, Jacqueline Wemboo, Ayei, James, Sonoo, Janaki, Lekana-Douki, Jean Bernard, Makangara, Jean-Claude, Tamfum, Jean-Jacques, Heraud, Jean-Michel, Shaffer, Jeffrey, Giandhari, Jennifer, Musyoki, Jennifer, Uwanibe, Jessica, Bhiman, Jinal, Yasuda, Jiro, Morais, Joana, Mends, Joana, Kiconco, Jocelyn, Sandi, John Demby, Huddleston, John, Odoom, John Kofi, Morobe, John, Gyapong, John, Kayiwa, John, Okolie, Johnson, Xavier, Joicymara Santos, Gyamfi, Jones, Kofi Bonney, Joseph Humphrey, Nyandwi, Joseph, Everatt, Josie, Farah, Jouali, Nakaseegu, Joweria, Ngoi, Joyce, Namulondo, Joyce, Oguzie, Judith, Andeko, Julia, Lutwama, Julius, O’Grady, Justin, Siddle, Katherine, Victoir, Kathleen, Adeyemi, Kayode, Tumedi, Kefentse, Carvalho, Kevin Sanders, Mohammed, Khadija Said, Musonda, Kunda, Duedu, Kwabena, Belyamani, Lahcen, Fki-Berrajah, Lamia, Singh, Lavanya, Biscornet, Leon, Le.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-334191

ABSTRACT

Investment in Africa over the past year with regards to SARS-CoV-2 genotyping has led to a massive increase in the number of sequences, exceeding 100,000 genomes generated to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence within their own borders, coupled with a decrease in sequencing turnaround time. Findings from this genomic surveillance underscores the heterogeneous nature of the pandemic but we observe repeated dissemination of SARS-CoV-2 variants within the continent. Sustained investment for genomic surveillance in Africa is needed as the virus continues to evolve, particularly in the low vaccination landscape. These investments are very crucial for preparedness and response for future pathogen outbreaks. One-Sentence Summary Expanding Africa SARS-CoV-2 sequencing capacity in a fast evolving pandemic.

2.
Nat Commun ; 13(1): 1152, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1730284

ABSTRACT

In spring 2021, an increasing number of infections was observed caused by the hitherto rarely described SARS-CoV-2 variant A.27 in south-west Germany. From December 2020 to June 2021 this lineage has been detected in 31 countries. Phylogeographic analyses of A.27 sequences obtained from national and international databases reveal a global spread of this lineage through multiple introductions from its inferred origin in Western Africa. Variant A.27 is characterized by a mutational pattern in the spike gene that includes the L18F, L452R and N501Y spike amino acid substitutions found in various variants of concern but lacks the globally dominant D614G. Neutralization assays demonstrate an escape of A.27 from convalescent and vaccine-elicited antibody-mediated immunity. Moreover, the therapeutic monoclonal antibody Bamlanivimab and partially the REGN-COV2 cocktail fail to block infection by A.27. Our data emphasize the need for continued global monitoring of novel lineages because of the independent evolution of new escape mutations.


Subject(s)
COVID-19/immunology , COVID-19/virology , Pandemics , SARS-CoV-2/immunology , Africa, Western/epidemiology , Amino Acid Substitution , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , Antiviral Agents/pharmacology , COVID-19/transmission , Drug Combinations , Germany/epidemiology , Global Health , Humans , Immune Evasion/genetics , Mutation , Phylogeography , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-292291

ABSTRACT

In spring 2021, an increasing number of infections was observed caused by the hitherto rarely described SARS-CoV-2 variant A.27 in south-west Germany. From December 2020 to June 2021 this lineage has been detected in 31 countries. Phylogeographic analyses of A.27 sequences obtained from national and international databases reveal a global spread of this lineage through multiple introductions from its inferred origin in Western Africa. Variant A.27 is characterized by a mutational pattern in the spike gene that includes the L18F, L452R and N501Y spike amino acid substitutions found in various variants of concern but lacks the globally dominant D614G. Neutralization assays demonstrated an escape of A.27 from convalescent and vaccine-elicited antibody-mediated immunity. Moreover, the therapeutic monoclonal antibody Bamlanivimab and partially the REGN-COV2 cocktail failed to block infection by A.27. Our data emphasize the need for continued global monitoring of novel lineages because of the independent evolution of new escape mutations.

4.
BMC Infect Dis ; 21(1): 539, 2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1261266

ABSTRACT

BACKGROUND: In sub-Saharan Africa, acute respiratory infections (ARI), acute gastrointestinal infections (GI) and acute febrile disease of unknown cause (AFDUC) have a large disease burden, especially among children, while respective aetiologies often remain unresolved. The need for robust infectious disease surveillance to detect emerging pathogens along with common human pathogens has been highlighted by the ongoing novel coronavirus disease 2019 (COVID-19) pandemic. The African Network for Improved Diagnostics, Epidemiology and Management of Common Infectious Agents (ANDEMIA) is a sentinel surveillance study on the aetiology and clinical characteristics of ARI, GI and AFDUC in sub-Saharan Africa. METHODS: ANDEMIA includes 12 urban and rural health care facilities in four African countries (Côte d'Ivoire, Burkina Faso, Democratic Republic of the Congo and Republic of South Africa). It was piloted in 2018 in Côte d'Ivoire and the initial phase will run from 2019 to 2021. Case definitions for ARI, GI and AFDUC were established, as well as syndrome-specific sampling algorithms including the collection of blood, naso- and oropharyngeal swabs and stool. Samples are tested using comprehensive diagnostic protocols, ranging from classic bacteriology and antimicrobial resistance screening to multiplex real-time polymerase chain reaction (PCR) systems and High Throughput Sequencing. In March 2020, PCR testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and analysis of full genomic information was included in the study. Standardised questionnaires collect relevant clinical, demographic, socio-economic and behavioural data for epidemiologic analyses. Controls are enrolled over a 12-month period for a nested case-control study. Data will be assessed descriptively and aetiologies will be evaluated using a latent class analysis among cases. Among cases and controls, an integrated analytic approach using logistic regression and Bayesian estimation will be employed to improve the assessment of aetiology and associated risk factors. DISCUSSION: ANDEMIA aims to expand our understanding of ARI, GI and AFDUC aetiologies in sub-Saharan Africa using a comprehensive laboratory diagnostics strategy. It will foster early detection of emerging threats and continued monitoring of important common pathogens. The network collaboration will be strengthened and site diagnostic capacities will be reinforced to improve quality management and patient care.


Subject(s)
Communicable Diseases/diagnosis , Communicable Diseases/epidemiology , Mass Screening , Sentinel Surveillance , Bayes Theorem , Burkina Faso , Case-Control Studies , Cote d'Ivoire , Democratic Republic of the Congo , Fever/epidemiology , Fever/microbiology , Gastrointestinal Diseases/epidemiology , Gastrointestinal Diseases/microbiology , Humans , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/epidemiology , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL