Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Respir Res ; 23(1): 68, 2022 Mar 22.
Article in English | MEDLINE | ID: covidwho-1759751


BACKGROUND: Patient hospitalized for coronavirus disease 2019 (COVID-19) pulmonary infection can have sequelae such as impaired exercise capacity. We aimed to determine the frequency of long-term exercise capacity limitation in survivors of severe COVID-19 pulmonary infection and the factors associated with this limitation. METHODS: Patients with severe COVID-19 pulmonary infection were enrolled 3 months after hospital discharge in COVulnerability, a prospective cohort. They underwent cardiopulmonary exercise testing, pulmonary function test, echocardiography, and skeletal muscle mass evaluation. RESULTS: Among 105 patients included, 35% had a reduced exercise capacity (VO2peak < 80% of predicted). Compared to patients with a normal exercise capacity, patients with reduced exercise capacity were more often men (89.2% vs. 67.6%, p = 0.015), with diabetes (45.9% vs. 17.6%, p = 0.002) and renal dysfunction (21.6% vs. 17.6%, p = 0.006), but did not differ in terms of initial acute disease severity. An altered exercise capacity was associated with an impaired respiratory function as assessed by a decrease in forced vital capacity (p < 0.0001), FEV1 (p < 0.0001), total lung capacity (p < 0.0001) and DLCO (p = 0.015). Moreover, we uncovered a decrease of muscular mass index and grip test in the reduced exercise capacity group (p = 0.001 and p = 0.047 respectively), whilst 38.9% of patients with low exercise capacity had a sarcopenia, compared to 10.9% in those with normal exercise capacity (p = 0.001). Myocardial function was normal with similar systolic and diastolic parameters between groups whilst reduced exercise capacity was associated with a slightly shorter pulmonary acceleration time, despite no pulmonary hypertension. CONCLUSION: Three months after a severe COVID-19 pulmonary infection, more than one third of patients had an impairment of exercise capacity which was associated with a reduced pulmonary function, a reduced skeletal muscle mass and function but without any significant impairment in cardiac function.

COVID-19/complications , Exercise Tolerance/physiology , Pneumonia/physiopathology , Aged , COVID-19/physiopathology , Cohort Studies , Echocardiography/methods , Echocardiography/statistics & numerical data , Exercise Test/methods , Exercise Test/statistics & numerical data , Exercise Tolerance/immunology , Female , Follow-Up Studies , France , Humans , Lung/physiopathology , Male , Middle Aged , Pneumonia/etiology , Prospective Studies , Respiratory Function Tests/methods , Respiratory Function Tests/statistics & numerical data , Respiratory Insufficiency/etiology , Respiratory Insufficiency/physiopathology
J Intensive Care ; 9(1): 12, 2021 Jan 20.
Article in English | MEDLINE | ID: covidwho-1067282


BACKGROUND: Sepsis is characterized by various hemodynamic alterations which could happen concomitantly in the heart, pulmonary and systemic circulations. A comprehensive demonstration of their interactions in the clinical setting of COVID-19 sepsis is lacking. This study aimed at evaluating the feasibility, clinical implications, and physiological coherence of the various indices of hemodynamic function and acute myocardial injury (AMI) in COVID-19 sepsis. METHODS: Hemodynamic and echocardiographic data of septic critically ill COVID-19 patients were prospectively recorded. A dozen hemodynamic indices exploring contractility and loading conditions were assessed. Several cardiac biomarkers were measured, and AMI was considered if serum concentration of high-sensitive troponin T (hs-TNT) was above the 99th percentile, upper reference. RESULTS: Sixty-seven patients were assessed (55 males), with a median age of 61 [50-70] years. Overall, the feasibility of echocardiographic parameters was very good, ranging from 93 to 100%. Hierarchical clustering method identified four coherent clusters involving cardiac preload, left ventricle (LV) contractility, LV afterload, and right ventricle (RV) function. LV contractility indices were not associated with preload indices, but some of them were positively correlated with RV function parameters and negatively correlated with a single LV afterload parameter. In most cases (n = 36, 54%), echocardiography results prompted therapeutic changes. Mortality was not influenced by the echocardiographic variables in multivariable analysis. Cardiac biomarkers' concentrations were most often increased with high incidence of AMI reaching 72%. hs-TNT was associated with mortality and inversely correlated with most of LV and RV contractility indices. CONCLUSIONS: In this comprehensive hemodynamic evaluation in critically ill COVID-19 septic patients, we identified four homogeneous and coherent clusters with a good feasibility. AMI was common and associated with alteration of LV and RV functions. Echocardiographic assessment had a clinical impact on patient management in most cases.

Ann Intensive Care ; 10(1): 108, 2020 Aug 06.
Article in English | MEDLINE | ID: covidwho-696210


Hypoxemia is the main feature of COVID-19-related acute respiratory distress syndrome (C-ARDS), but its underlying mechanisms are debated, especially in patients with low respiratory system elastance (Ers). We assessed 60 critically ill patients hospitalized in our intensive care unit for C-ARDS. We used contrast transthoracic echocardiography to assess patent foramen ovale (PFO) shunt and transpulmonary bubble transit (TPBT). The median Ers was 32 cmH2O/L. PFO shunt was detected in six (10%) patients and TPBT in 12 (20%) patients. PFO shunt and TPBT were similar in patients with higher or lower Ers. In conclusion, PFO and TPBT do not seem to be the main drivers of hypoxemia in C-ARDS, especially in patients with lower Ers.