Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Clean Prod ; 372: 133619, 2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-1996321

ABSTRACT

Coronavirus 2019 (COVID-19) vaccines have been produced on a large scale since 2020. However, large-scale vaccine production has led to two forms of waste; namely, overproduction and underutilization. Most of today's systems and technologies used to manage waste data related to COVID-19 vaccines fall short of providing transparency, traceability, accountability, trust, and security features. In this paper, we address the problem of COVID-19 vaccines waste due to their overproduction and underutilization. We propose a blockchain-based solution that is composed of five phases: registration, commitment; production and delivery; consumption; and waste assessment. These phases make up the complete life cycle of a COVID-19 vaccine, and they are governed by several smart contracts to ensure accountability of all the actions taken by the involved entities and reduce any excessive waste caused by overproduction, overordering, or underconsumption. We ensure security, traceability, and data provenance by recording all actions through smart contracts in the form of events on an immutable ledger. We utilize decentralized storage such as the InterPlanetary File System (IPFS) to reduce the costs posed by large-sized file storage when stored on-chain. We present algorithms that describe the logic behind our developed smart contracts. We test and validate the functionalities of our proposed solution. We conduct security, cost, and scalability analyses to show that our solution is affordable, scalable, and secure. We compare our solution with the existing blockchain-based solutions to show its novelty and superiority. The smart contract code is made publicly available on GitHub.

2.
IEEE Access ; 9: 71372-71387, 2021.
Article in English | MEDLINE | ID: covidwho-1238332

ABSTRACT

Distribution and delivery of Coronavirus 2019 (COVID-19) vaccines have become challenging after their emergence. Today's platforms and systems leveraged for managing data related to COVID-19 vaccines' distribution and delivery fall short in providing transparency, trackability and traceability, immutability, audit, and trust features. Also, they are vulnerable to the single point of failure problem due to centralization. Such limitations hindering the safe, secure, transparent, trustworthy, and reliable distribution and delivery process of COVID-19 vaccines. In this paper, we propose an Ethereum blockchain-based solution for managing data related to COVID-19 vaccines' distribution and delivery. We develop smart contracts to automate the traceability of COVID-19 vaccines while ensuring data provenance, transparency, security, and accountability. We integrate the Ethereum blockchain with off-chain storage to manage non-critical and large-sized data. We present algorithms and discuss their full implementation, testing, and validation details. We evaluate the proposed solution by performing cost and security analysis as well as comparing it with the existing non-blockchain and blockchain-based solutions. Performance evaluation results reveal that the proposed solution is low-cost, and our smart contracts are secure enough against possible attacks and vulnerabilities. The smart contracts code along with testing scripts is made publicly available.

SELECTION OF CITATIONS
SEARCH DETAIL