Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Lecture Notes on Data Engineering and Communications Technologies ; 165:209-221, 2023.
Article in English | Scopus | ID: covidwho-2300583


Covid-19 pandemic created a global shift in the way how consumers purchase. Restrictions to movements of individuals and commodities created a big challenge on day today life. Due to isolation, social media usage has increased substantially, and these platforms created significant impact carrying news and sentiments instantaneously. These sentiments impacted the purchase behavior of consumers and online retailers witnessed variations in their sales. Retailers used various customer behavior prediction models such as Recommendation systems to influence consumers and increasing their sales. Due to Covid-19 pandemic, these models may not perform the same way due to changes in consumer behavior. By integrating consumer sentiments from online social media platform as another feature in the prediction machine learning models such as recommendation systems, retailers can understand consumer behavior better and create Recommendations appropriately. This provides the consumers with appropriate choice of products in essential and non-essential categories based on pandemic condition restrictions. This also helps retailers to plan their operations and inventory appropriately. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

Lecture Notes on Data Engineering and Communications Technologies ; 165:343-356, 2023.
Article in English | Scopus | ID: covidwho-2299073


Supply chain is a cornerstone of the eCommerce industry and is a key component in its growth. Supply chain data analytics and risk management in the eCommerce space have picked up steam in recent times. With the availability of suitable & capable resources for big data and artificial intelligence, predictive analytics has become a significant area of interest to achieve organizational excellence by exploiting data available and developing data-driven support systems. The existing literature in supply chain risk management explain various methods assisting to identify & mitigate risks using big data and machine learning (ML) techniques across industries. Although ML techniques are used in various industries, not many aspects of eCommerce had utilized predictive analytics to their benefit. In the eCommerce industry, delivery is paramount for the business. During COVID-19 pandemic, needs changed. Reliable delivery services are preferred to speedy delivery. Multiple parameters involve delivering the product to a customer as per promised due date. This research will try to predict the risks of late deliveries to online shopping customers by analyzing the historical data using machine learning techniques and comparing them by multiple performance metrics. As a part of this comparative study, a new hybrid technique which is a combination of Logistic Regression, XGBoost, Light GBM, and Random Forest is built which has outperformed all the other ensemble and individual algorithms with respect to accuracy, specificity, precision, and F1-score. This study will benefit the eCommerce companies to improve their customer satisfaction by predicting late deliveries accurately and early. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.