Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
2.
Diagnostics ; 12(9):2051, 2022.
Article in English | MDPI | ID: covidwho-1997542

ABSTRACT

Coronavirus disease 2019 (COVID-19) is primarily caused by various forms of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) variants. COVID-19 is characterized by hyperinflammation, oxidative stress, multi-organ injury (MOI)-like acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Different biomarkers are used in the assessment of COVID-19 severity including D-dimer, ferritin, lactate dehydrogenase (LDH), and hypoxia-inducible factor (HIF). Interestingly, growth differentiation factor 15 (GDF15) has recently become a potential biomarker correlated with the COVID-19 severity. Thus, this critical review aimed to determine the critical association between GDF15 and COVID-19. The perfect function of GDF15 remains not well-recognized;nevertheless, it plays a vital role in controlling cell growth, apoptosis and inflammatory activation. Furthermore, GDF15 may act as anti-inflammatory and pro-inflammatory signaling in diverse cardiovascular complications. Furthermore, the release of GDF15 is activated by various growth factors and cytokines including macrophage colony-stimulating factor (M-CSF), angiotensin II (AngII) and p53. Therefore, higher expression of GDF15 in COVID-19 might a compensatory mechanism to stabilize and counteract dysregulated inflammatory reactions. In conclusion, GDF15 is an anti-inflammatory cytokine that could be associated with the COVID-19 severity. Increased GDF15 could be a compensatory mechanism against hyperinflammation and exaggerated immune response in the COVID-19. Experimental, preclinical and large-scale clinical studies are warranted in this regard.

3.
Biomedicines ; 10(8):2032, 2022.
Article in English | MDPI | ID: covidwho-1997513

ABSTRACT

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection can trigger the adaptive and innate immune responses, leading to uncontrolled inflammatory reactions and associated local and systematic tissue damage, along with thromboembolic disorders that may increase the risk of acute ischemic stroke (AIS) in COVID-19 patients. The neuropilin (NRP-1) which is a co-receptor for the vascular endothelial growth factor (VEGF), integrins, and plexins, is involved in the pathogenesis of AIS. NRP-1 is also regarded as a co-receptor for the entry of SARS-CoV-2 and facilitates its entry into the brain through the olfactory epithelium. NRP-1 is regarded as a cofactor for binding of SARS-CoV-2 with angiotensin-converting enzyme 2 (ACE2), since the absence of ACE2 reduces SARS-CoV-2 infectivity even in presence of NRP-1. Therefore, the aim of the present study was to clarify the potential role of NRP-1 in COVID-19 patients with AIS. SARS-CoV-2 may transmit to the brain through NRP-1 in the olfactory epithelium of the nasal cavity, leading to different neurological disorders, and therefore about 45% of COVID-19 patients had neurological manifestations. NRP-1 has the potential capability to attenuate neuroinflammation, blood–brain barrier (BBB) permeability, cerebral endothelial dysfunction (ED), and neuronal dysfunction that are uncommon in COVID-19 with neurological involvement, including AIS. Similarly, high NRP-1 serum level is linked with ED, oxidative stress, and the risk of pulmonary thrombosis in patients with severe COVID-19, suggesting a compensatory mechanism to overcome immuno-inflammatory disorders. In conclusion, NRP-1 has an important role in the pathogenesis of COVID-19 and AIS, and could be the potential biomarker linking the development of AIS in COVID-19. The present findings cannot provide a final conclusion, and thus in silico, experimental, in vitro, in vivo, preclinical, and clinical studies are recommended to confirm the potential role of NRP-1 in COVID-19, and to elucidate the pharmacological role of NRP-1 receptor agonists and antagonists in COVID-19.

4.
Curr Protein Pept Sci ; 2022 Aug 11.
Article in English | MEDLINE | ID: covidwho-1993661

ABSTRACT

In Covid-19, the pathological effect of SARS-CoV-2 infection is arbitrated through direct viral toxicity, unusual immune response, endothelial dysfunction, deregulated renin-angiotensin system [RAS], and thrombo-inflammation leading to acute lung injury [ALI], with a succession of acute respiratory distress syndrome [ARDS] in critical conditions. C1 esterase inhibitor [C1INH] is a protease inhibitor that inhibits the spontaneous activation of complement and contact systems and kinin pathway, clotting, and fibrinolytic systems. So, targeting of complement system through activation of C1INH might be a novel therapeutic modality in the treatment of Covid-19. Therefore, this study aims to illustrate the potential nexus between C1INH and the pathophysiology of SARS-CoV-2 infection. C1INH is highly dysregulated in Covid-19 due to inflammatory and coagulation disorders. C1INH is up-regulated in Covid-19 and sepsis as an acute phase response, but this increase is insufficient to block the activated complement system. In addition, the C1INH serum level predicts the development of ARDS in Covid-19 patients, as its up-regulation is associated with the development of cytokine storm. In Covid-19, C1INH might be inhibited or dysregulated by SARS-CoV-2, leading to propagation of complement system activation with subsequent uncontrolled immunological stimulation due to activation of bradykinin and FXII with sequential activation of coagulation cascades and polymerization of fibrin. Thus, suppression of C1INH by SARS-CoV-2 infection leads to thrombosis and excessive inflammation due to uncontrolled activation of complements and contact systems.

5.
Endocr Metab Immune Disord Drug Targets ; 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1987305

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by a severe acute respiratory distress syndrome, coronavirus type 2 (SARS-CoV-2), leading to acute tissue injury and an overstated immune response. In COVID-19, there are noteworthy changes in the fibrinolytic system with the development of coagulopathy. Therefore, modulation of the fibrinolytic system may affect the course of COVID-19. Tranexamic acid (TXA) is an anti-fibrinolytic drug that reduces the conversion of plasminogen to plasmin, which is necessary for SARS-CoV-2 infectivity. In addition, TXA has anti-inflammatory, anti-platelet, and anti-thrombotic effects, which may attenuate the COVID-19 severity. Thus, in this narrative review, we try to find the beneficial and harmful effects of TXA in COVID-19.

6.
Curr Drug Targets ; 2022 Aug 10.
Article in English | MEDLINE | ID: covidwho-1987282

ABSTRACT

Covid-19 may be associated with various neurological disorders, including dysautonomia, a dysfunction of the autonomic nervous system (ANS). In Covid-19, hypoxia, immuno-inflammatory abnormality, and deregulation of the renin-angiotensin system (RAS) may increase sympathetic discharge with dysautonomia development. Direct SARS-CoV-2 cytopathic effects and associated inflammatory reaction may lead to neuroinflammation, affecting different parts of the central nervous system (CNS), including the autonomic center in the hypothalamus, causing dysautonomia. High circulating AngII and hypoxia, oxidative stress, high pro-inflammatory cytokines, and emotional stress can also provoke autonomic deregulation and high sympathetic outflow with the development of the sympathetic storm. During SARS-CoV-2 infection with neuro-invasion, GABA-ergic neurons and nicotinic acetylcholine receptor (nAChR) are inhibited in the hypothalamic pre-sympathetic neurons leading to sympathetic storm and dysautonomia. Different therapeutic modalities are applied to treat SARS-CoV-2 infection, like antiviral and anti-inflammatory drugs. One robust repurposed one is Ivermectin (IVM), widely used to prevent and manage mild-moderate Covid-19. IVM activates both GABA-ergic neurons and nAChRs to mitigate SARS-CoV-2 infection-induced dysautonomia. Therefore, in this brief report, we try to identify the potential role of IVM in the management of Covid-19-induced dysautonomia.

7.
Inflamm Res ; 2022 Aug 08.
Article in English | MEDLINE | ID: covidwho-1976794

ABSTRACT

INTRODUCTION: Fenofibrate is an agonist of peroxisome proliferator activated receptor alpha (PPAR-α), that possesses anti-inflammatory, antioxidant, and anti-thrombotic properties. Fenofibrate is effective against a variety of viral infections and different inflammatory disorders. Therefore, the aim of critical review was to overview the potential role of fenofibrate in the pathogenesis of SARS-CoV-2 and related complications. RESULTS: By destabilizing SARS-CoV-2 spike protein and preventing it from binding angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV-2 entry, fenofibrate can reduce SARS-CoV-2 entry in human cells Fenofibrate also suppresses inflammatory signaling pathways, which decreases SARS-CoV-2 infection-related inflammatory alterations. In conclusion, fenofibrate anti-inflammatory, antioxidant, and antithrombotic capabilities may help to minimize the inflammatory and thrombotic consequences associated with SARSCoV-2 infection. Through attenuating the interaction between SARS-CoV-2 and ACE2, fenofibrate can directly reduce the risk of SARS-CoV-2 infection. CONCLUSIONS: As a result, fenofibrate could be a potential treatment approach for COVID-19 control.

8.
Inflammopharmacology ; 2022 Aug 03.
Article in English | MEDLINE | ID: covidwho-1971761

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus type 2) has been identified as the source of a world coronavirus pandemic in 2019. Covid-19 is considered a main respiratory disease-causing viral pneumonia and, in severe cases, leads to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Although, extrapulmonary manifestations of Covid-19 like neurological, cardiovascular, and gastrointestinal have been confirmed. Exaggerated immune response and release of a high amount of pro-inflammatory cytokines may progress, causing a cytokine storm. Consequently, direct and indirect effects of SARS-CoV-2 infection can evolve into systemic complications due to the progression of hyper inflammation, oxidative stress and dysregulation of the renin-angiotensin system (RAS). Therefore, anti-inflammatory and antioxidant agents could be efficient in alleviating these disorders. Ursolic acid has anti-inflammatory, antioxidant, and antiviral effects; it reduces the release of pro-inflammatory cytokines, improves anti-inflammatory cytokines, and inhibits the production of reactive oxygen species (ROS). In virtue of its anti-inflammatory and antioxidant effects, ursolic acid may minimize SARS-CoV-2 infection-induced complications. Also, by regulating RAS and inflammatory signaling pathways, ursolic acid might effectively reduce the development of ALI in ARDS in Covid-19. In this state, this perspective discusses how ursolic acid can mitigate hyper inflammation and oxidative stress in Covid-19.

9.
Front Pharmacol ; 13: 884228, 2022.
Article in English | MEDLINE | ID: covidwho-1952527

ABSTRACT

A novel severe acute respiratory distress syndrome coronavirus type 2 (SARS-CoV-2) has been confirmed as the cause of the global pandemic coronavirus disease 2019 (COVID-19). Different repurposed drugs have been trialed and used in the management of COVID-19. One of these agents was the anti-cancer Selinexor (SXR). SXR is an anti-cancer drug that acts by inhibition of nuclear exportin-1 (XPO1), which inhibits transport of nuclear proteins from the nucleus to the cytoplasm, leading to the induction of cell-cycle arrest and apoptosis. XPO1 inhibitors had antiviral effects, mainly against respiratory syncytial virus (RSV) and influenza virus. SXR inhibits transport of SARS-CoV-2 nuclear proteins to the cytoplasm with further inhibition of SARS-CoV-2 proliferation. SXR has the ability to prevent the development of a cytokine storm in COVID-19 by inhibiting the release of pro-inflammatory cytokines with the augmentation release of anti-inflammatory cytokines. In conclusion, SARS-CoV-2 infection is linked with activation of XPO1, leading to the triggering of inflammatory reactions and oxidative stress. Inhibition of XPO1 by Selinexor (SXR), a selective inhibitor of nuclear export (SINE), can reduce the proliferation of SARS-CoV-2 and associated inflammatory disorders. Preclinical and clinical studies are warranted in this regard.

10.
Ann Hematol ; 101(9): 1887-1895, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1926021

ABSTRACT

COVID-19 is a global pandemic triggered by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 entry point involves the interaction with angiotensin-converting enzyme 2 (ACE2) receptor, CD147, and erythrocyte Band3 protein. Hemolytic anemia has been linked to COVID-19 through induction of autoimmune hemolytic anemia (AIHA) caused by the formation of autoantibodies (auto-Abs) or directly through CD147 or erythrocyte Band3 protein-mediated erythrocyte injury. Here, we aim to provide a comprehensive view of the potential mechanisms contributing to hemolytic anemia during the SARS-CoV-2 infection. Taken together, data discussed here highlight that SARS-CoV-2 infection may lead to hemolytic anemia directly through cytopathic injury or indirectly through induction of auto-Abs. Thus, as SARS-CoV-2-induced hemolytic anemia is increasingly associated with COVID-19, early detection and management of this condition may prevent the poor prognostic outcomes in COVID-19 patients. Moreover, since hemolytic exacerbations may occur upon medicines for COVID-19 treatment and anti-SARS-CoV-2 vaccination, continued monitoring for complications is also required. Given that, intelligent nanosystems offer tools for broad-spectrum testing and early diagnosis of the infection, even at point-of-care sites.


Subject(s)
Anemia, Hemolytic , COVID-19 , Anemia, Hemolytic/etiology , COVID-19/complications , COVID-19/drug therapy , Humans , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2
11.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-1918490

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by a novel virus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2-induced hyperinflammation together with alteration of plasma proteins, erythrocyte deformability, and platelet activation, may affect blood viscosity. Thus, this review aimed to study the link between SARS-CoV-2 infection and alteration of blood viscosity in COVID-19 patients. In order to review findings related to hyperviscosity in COVID-19, we suggested a protocol for narrative review of related published COVID-19 articles. Hyperviscosity syndrome is developed in different hematological disorders including multiple myeloma, sickle cell anemia, Waldenstorm macroglobulinemia, polycythemia, and leukemia. In COVID-19, SARS-CoV-2 may affect erythrocyte morphology via binding of membrane cluster of differentiation 147 (CD147) receptors, and B and 3 proteins on the erythrocyte membrane. Variations in erythrocyte fragility and deformability with endothelial dysfunction and oxidative stress in SARS-CoV-2 infection may cause hyperviscosity syndrome in COVID-19. Of interest, hyperviscosity syndrome in COVID-19 may cause poor tissue perfusion, peripheral vascular resistance, and thrombosis. Most of the COVID-19 patients with a blood viscosity more than 3.5 cp may develop coagulation disorders. Of interest, hyperviscosity syndrome is more commonly developed in vaccine recipients who had formerly received the COVID-19 vaccine due to higher underlying immunoglobulin concentrations, and only infrequently in those who have not received the COVID-19 vaccine. Taken together, these observations are untimely too early to give a final connotation between COVID-19 vaccination and the risk for development of hyperviscosity syndrome, consequently prospective and retrospective studies are necessary in this regard.

12.
Curr Protein Pept Sci ; 2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-1910825

ABSTRACT

Natriuretic peptide system [NPS] is a group of peptide hormones or paracrine factors, including atrial natriuretic peptide [ANP], brain natriuretic peptide [BNP], and natriuretic peptide precursor C [NPC], that are structurally related. The physiological effects of NPS include natriuresis, increased glomerular filtration rate, inhibition release of renin, vasopressin, and aldosterone, sympathetic inhibition, vasodilatations, and prevents cardiac hypertrophy and remodeling. ANP has immunological effects, as it is also produced locally from immune cells; it regulates innate and adaptive immune responses. Metabolism and degradation of ANP are achieved by neutral endopeptidase [NEP], also known as neprilysin. Coronavirus disease 2019 [Covid-19] pandemic may lead to acute lung injury [ALI] and/or respiratory distress syndrome [ARDS]. The underlying causes of inflammatory and immunological disorders in patients with severe Covid-19 are connected to the immune over-stimulation with the subsequent release of a pro-inflammatory cytokines. Covid-19 severity is linked with high ANP serum levels regardless of acute cardiac injury. Inflammatory stimuli appear to be linked with the release of NPs, which anti-inflammatory effects prevent the development of ALI/ARDS in Covid-19. Therefore, neprilysin inhibitors like sacubitril increase endogenous NPs may reduce the risk of ALI in Covid-19 due to the potentiation of endogenous anti-inflammatory effects of NPs. However, sacubitril increases gastrin-releasing peptide, cathepsin G and release of pro-inflammatory cytokines that are inactivated by neprilysin. In conclusion, NPs and neprilysin have cardio-pulmonary protective effects against Covid-19-induced ALI/ARDS. Neprilysin inhibitor sacubitril has dual protective and harmful effects regarding metabolizing vasoactive peptides by neprilysin. These findings require potential reevaluation of the effect of neprilysin inhibitors in the management of Covid-19.

13.
Curr Protein Pept Sci ; 2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-1892473

ABSTRACT

The pathogenesis of SARS-CoV-2 infection is related to the direct cytopathic effect and associated hyper-inflammatory due to exaggerated immune response. Different experimental and clinical studies revealed that other biomarkers could be used to determine the Covid-19 severity, such as D-dimer, procalcitonin, C-reaction protein (CRP), IL-6, and ferritin. Calprotectin (CP) is associated with intestinal inflammation, intestinal injury, and different respiratory diseases such as cystic fibrosis. Thus, CP might be a possible biomarker linking intestinal injury and acute lung injury (ALI) in Covid-19. Therefore, this study aimed to find a potential role of CP regarding GITI and ALI in Covid-19. CP is a complex protein consisting of S100A8 and S100A9, belongs to the Ca+2-binding proteins S100 family abundant in the cytosol of neutrophils and expressed on the monocyte membranes, macrophages, and intestinal epithelial cells. CP is a proinflammatory protein that acts through activation of the receptor for the advanced glycation end product (RAGE) and toll-like receptor 4 (TLR4). CP is a biomarker of neutrophil activation and is released following the turnover of neutrophils. CP could be controversial; it increases airway inflammation or protects lung and airway epithelium from an exaggerated immune response. Therefore, a high level of CP in different respiratory disorders might be protective and compensate against abnormal immune responses. CP level is high in Covid-19 and correlated with Covid-19 severity and oxygen demand due to activation release of proinflammatory cytokines and inflammatory signaling pathways. Therefore, CP level is elevated in both ALI and intestinal inflammation so that it could be a potential biomarker link the respiratory and intestinal injury in Covid-19.

14.
Future Sci OA ; 8(5): FSO797, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1879356

ABSTRACT

Vinpocetine (VPN) is an alkaloid derivative of vincamine inhibits phosphodiesterase type 1 that increase cyclic guanosine monophosphate and cyclic adenosine monophosphate. VPN have anti-inflammatory and antioxidant effects with suppression release of pro-inflammatory cytokines. Moreover, VPN mitigates oxidative stress (OS) and inflammatory reactions through inhibition of mitogen-activated protein kinase (MAPK) signaling pathway. Therefore, VPN may decrease hyper-inflammation-induced acute lung injury in COVID-19 through modulation of NF-κB pathway. Taken together, VPN has pulmonary and extra-pulmonary protective effects against COVID-19 through mitigation of OS and hyperinflammation. In conclusion, VPN has noteworthy anti-inflammatory and anti-oxidant effects through inhibition of NF-κB/MAPK signaling pathway so, it may reduce SARS-CoV-2-induced hyper inflammatory and OS.

15.
Arch Pharm (Weinheim) ; : e2200188, 2022 Jun 07.
Article in English | MEDLINE | ID: covidwho-1877557

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is linked with inflammatory disorders and the development of oxidative stress in extreme cases. Therefore, anti-inflammatory and antioxidant drugs may alleviate these complications. Ginkgo biloba L. folium extract (EGb) is a herbal medicine containing various active constituents. This review aims to provide a critical discussion on the potential role of EGb in the management of coronavirus disease 2019 (COVID-19). The antiviral effect of EGb is mediated by different mechanisms, including blocking SARS-CoV-2 3-chymotrypsin-like protease that provides trans-variant effectiveness. Moreover, EGb impedes the development of pulmonary inflammatory disorders through the diminution of neutrophil elastase activity, the release of proinflammatory cytokines, platelet aggregation, and thrombosis. Thus, EGb can attenuate the acute lung injury and acute respiratory distress syndrome in COVID-19. In conclusion, EGb offers the potential of being used as adjuvant antiviral and symptomatic therapy. Nanosystems enabling targeted delivery, personalization, and booster of effects provide the opportunity for the use of EGb in modern phytotherapy.

16.
Inflammopharmacology ; 30(3): 799-809, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1872585

ABSTRACT

The existing pandemic viral infection caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) leads to coronavirus disease 2019 (Covid-19). SARS-CoV-2 exploits angiotensin-converting enzyme 2 (ACE2) as an entry-point into affected cells and down-regulation of ACE2 by this virus triggers the release of pro-inflammatory cytokines and up-regulation of angiotensin II. These changes may lead to hypercytokinemia and the development of cytokine storm with the development of acute lung injury and acute respiratory distress syndrome. Different repurposed had been in use in the management of Covid-19, one of these agents is pentoxifylline (PTX) which has anti-inflammatory and antioxidant properties. Therefore, the objective of the present mini-review is to highlight the potential role of PTX in Covid-19 regarding its anti-inflammatory and antioxidant effects. PTX is a non-selective phosphodiesterase inhibitor that increases intracellular cyclic adenosine monophosphate which stimulates protein kinase A and inhibits leukotriene and tumor necrosis factor. PTX has antiviral, anti-inflammatory and immunomodulatory effects, thus it may attenuate SARS-CoV-2-induced hyperinflammation and related complications. As well, PTX can reduce hyper-viscosity and coagulopathy in Covid-19 through increasing red blood cell deformability and inhibition of platelet aggregations. In conclusion, PTX is a non-selective phosphodiesterase drug, that has anti-inflammatory and antioxidant effects thereby can reduce SARS-CoV-2 infection-hyperinflammation and oxidative stress. Besides, PTX improves red blood cells (RBCs) deformability and reduces blood viscosity so can mitigate Covid-19-induced hyper-viscosity and RBCs hyper-aggregation which is linked with the development of coagulopathy. Taken together, PTX seems to be an effective agent against Covid-19 severity.


Subject(s)
COVID-19 , Pentoxifylline , Angiotensin-Converting Enzyme 2 , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , COVID-19/drug therapy , Cytokine Release Syndrome , Humans , Pentoxifylline/pharmacology , Pentoxifylline/therapeutic use , SARS-CoV-2
17.
Clin Exp Med ; 2022 May 24.
Article in English | MEDLINE | ID: covidwho-1859012

ABSTRACT

Hyperviscosity syndrome (HVS) recently emerged as a complication of coronavirus disease 2019 (COVID-19) and COVID-19 vaccines. Therefore, the objectives of this critical review are to establish the association between COVID-19 and COVID-19 vaccines with the development of HVS. HVS may develop in various viral infections due to impairment of humoral and cellular immunity with elevation of immunoglobulins. COVID-19 can increase blood viscosity (BV) through modulation of fibrinogen, albumin, lipoproteins, and red blood cell (RBC) indices. HVS can cause cardiovascular and neurological complications in COVID-19 like myocardial infarction (MI) and stroke. HVS with or without abnormal RBCs function in COVID-19 participates in the reduction of tissue oxygenation with the development of cardio-metabolic complications and long COVID-19. Besides, HVS may develop in vaccine recipients with previous COVID-19 due to higher underlying Ig concentrations and rarely without previous COVID-19. Similarly, patients with metabolic syndrome are at the highest risk for propagation of HVS after COVID-19 vaccination. In conclusion, COVID-19 and related vaccines are linked with the development of HVS, mainly in patients with previous COVID-19 and underlying metabolic derangements. The possible mechanism of HVS in COVID-19 and related vaccines is increasing levels of fibrinogen and immunoglobulins. However, dehydration, oxidative stress, and inflammatory reactions are regarded as additional contributing factors in the pathogenesis of HVS in COVID-19. However, this critical review cannot determine the final causal relationship between COVID-19 and related vaccines and the development of HVS. Prospective and retrospective studies are warranted in this field.

18.
CNS Neurol Disord Drug Targets ; 2022 May 17.
Article in English | MEDLINE | ID: covidwho-1855235

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a primary respiratory disease with an alarming impact worldwide. COVID-19 is caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and presents various neurological symptoms, including seizures. SARS-CoV-2 shows neuroinvasive and neurotropic capabilities through a neuronal angiotensin-converting enzyme 2 (ACE2), which is also highly expressed in both neuronal and glial cells. Therefore, SARS-CoV-2 can trigger neuroinflammation and neuronal hyperexcitability, increasing the risk of seizures'. Olfactory neurons could be an exceptional neuronal pathway for the neuroinvasion of respiratory viruses to access the central nervous system (CNS) from the nasal cavity, leading to neuronal injury and neuroinflammation. Although neuronal ACE2 has been widely studied, other receptors for SARS-CoV-2 in the brain have been proposed to mediate viral-neuronal interactions with subsequent neurological squeals. Thus, the objective of the present critical review was to find the association and mechanistic insight between COVID-19 and the risk of seizures.

19.
Int J Immunopathol Pharmacol ; 36: 3946320221103151, 2022.
Article in English | MEDLINE | ID: covidwho-1854644

ABSTRACT

Erythrocrine function refers to erythrocytes' ability to synthesize and release active signaling molecules such as ATP and nitric oxide (NO). Erythrocyte NO regulates its deformability and increases its perfusion and circulation that prevent tissue hypoxia. Recently, there is a connotation between SARS-CoV-2 infection and erythrocrine function due to alteration in the release of NO and ATP from erythrocytes. SARS-CoV-2 binds erythrocyte band3 protein, which has a similar characteristic of ACE2, leading to alteration of erythrocyte physiology like oxygen transport with development of hypoxia. Similarly, SARS-CoV-2 infection activates erythrocyte protein kinase C alpha (PKC-α), causing significant changes in the erythrocyte functions. The erythrocytes can bind SARS-CoV-2 and its active particles with subsequent virus delivery to the liver and spleen macrophages. Thus, the erythrocytes act as elimination for SARS-CoV-2 in COVID-19. Moreover, the erythrocyte stored, release sphingosine-1 phosphate (S1P) improves endothelial and regulates lymphocyte functions. SARS-CoV-2 ORF8 protein binds the porphyrin part of hemoglobin heme at the ß1 chain, causing hemolysis and dysfunctional hemoglobin to reduce oxygen-carrying capacity. In conclusion, SARS-CoV-2 infection and associated pro-inflammatory disorders lead to abnormal erythrocrine function with subsequent inflammatory complications and endothelial dysfunction due to deficiency of protective released molecules (NO, G1P, and ATP) from functional erythrocytes. In vitro, preclinical, and clinical studies are mandatory in this regard.


Subject(s)
COVID-19 , Adenosine Triphosphate , Hemoglobins , Humans , Hypoxia , Oxygen , SARS-CoV-2
20.
Curr Protein Pept Sci ; 23(3): 166-169, 2022.
Article in English | MEDLINE | ID: covidwho-1847031

ABSTRACT

Current coronavirus disease (COVID-19) is regarded as a primary respiratory and vascular disease leading to acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and endothelial dysfunction (ED) in severe cases. The causative virus of COVID-19 is SARS-CoV-2, which binds angiotensin-converting enzyme 2 (ACE2) for its entry. It has been shown that ED is linked to various COVID-19 complications since endothelial cells are regarded as the chief barrier against SARS-CoV- 2 invasion. SARS-CoV-2-indued ED leads to endotheliitis and thrombosis due to endothelial nitric oxide (NO) inhibition with subsequent vasoconstriction and tissue hypoxia. Loss of vasodilator NO and anti-thrombin factor from endothelial SARS-CoV-2 infection contribute to the progression of vascular dysfunction and coagulopathy. Therefore, NO restoration improves pulmonary function and hinders viral replication during respiratory viral infections, including COVID-19. L-arginine is a semiessential amino acid that has antiviral and immunomodulatory effects as well as improves the biosynthesis of NO in endothelial cells. L-arginine may reduce the risk of ALI through inhibition of generation of peroxynitrite and suppression of the release of proinflammatory cytokines from alveolar macrophages. Of interest, restoration of NO by L-arginine may attenuate SARS-CoV-2 infection through different mechanisms, including reduction binding of SARS-CoV-2 to ACE2, inhibition of transmembrane protease serine-type 2 (TMPRSS2), critical for the activation of SARS-CoV-2 spike protein and cellular entry, inhibition proliferation and replication of SARS-CoV-2, and prevention of SARS-CoV-2-induced coagulopathy. In conclusion, through antiviral and immunomodulatory effects, L-arginine and released NO have mutual and interrelated actions against SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Arginine , COVID-19/drug therapy , Dietary Supplements , Endothelial Cells/metabolism , Humans , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL