ABSTRACT
Background Both infection and vaccination, alone or in combination, generate antibody and T cell responses against SARS-CoV-2. However, the maintenance of such responses – and hence protection from disease – requires careful characterisation. In a large prospective study of UK healthcare workers (Protective immunity from T cells in Healthcare workers (PITCH), within the larger SARS-CoV-2 immunity & reinfection evaluation (SIREN) study) we previously observed that prior infection impacted strongly on subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. Methods Here, we report longer follow up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZD1222 (Oxford/AstraZeneca) vaccination and up to 6 months following a subsequent mRNA booster vaccination. Findings We make three observations: Firstly, the dynamics of humoral and cellular responses differ;binding and neutralising antibodies declined whereas T and memory B cell responses were maintained after the second vaccine dose. Secondly, vaccine boosting restored IgG levels, broadened neutralising activity against variants of concern including omicron BA.1, BA.2 and BA.5, and boosted T cell responses above the 6-month level post dose 2. Thirdly, prior infection maintained its impact driving larger and broader T cell responses compared with never-infected people – a feature maintained until 6 months after the third dose. Conclusions Broadly cross-reactive T cell responses are well maintained over time – especially in those with combined vaccine and infection-induced immunity ("hybrid” immunity) – and may contribute to continued protection against severe disease. Funding Department for Health and Social Care, Medical Research Council Graphical abstract Moore et al. studied antibody and cellular responses to COVID-19 vaccines before and after dose 3. Antibody responses waned, but T cell responses were well maintained. T cells recognised Omicron variants better and for longer than antibodies. Differences due to vaccine regimen and previous infection evened out over time.
ABSTRACT
BACKGROUND: Both infection and vaccination, alone or in combination, generate antibody and T cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the maintenance of such responses-and hence protection from disease-requires careful characterization. In a large prospective study of UK healthcare workers (HCWs) (Protective Immunity from T Cells in Healthcare Workers [PITCH], within the larger SARS-CoV-2 Immunity and Reinfection Evaluation [SIREN] study), we previously observed that prior infection strongly affected subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. METHODS: Here, we report longer follow-up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZD1222 (Oxford/AstraZeneca) vaccination and up to 6 months following a subsequent mRNA booster vaccination. FINDINGS: We make three observations: first, the dynamics of humoral and cellular responses differ; binding and neutralizing antibodies declined, whereas T and memory B cell responses were maintained after the second vaccine dose. Second, vaccine boosting restored immunoglobulin (Ig) G levels; broadened neutralizing activity against variants of concern, including Omicron BA.1, BA.2, and BA.5; and boosted T cell responses above the 6-month level after dose 2. Third, prior infection maintained its impact driving larger and broader T cell responses compared with never-infected people, a feature maintained until 6 months after the third dose. CONCLUSIONS: Broadly cross-reactive T cell responses are well maintained over time-especially in those with combined vaccine and infection-induced immunity ("hybrid" immunity)-and may contribute to continued protection against severe disease. FUNDING: Department for Health and Social Care, Medical Research Council.
Subject(s)
COVID-19 , Vaccines , Humans , COVID-19 Vaccines , BNT162 Vaccine , ChAdOx1 nCoV-19 , Prospective Studies , SARS-CoV-2 , Antibodies, Neutralizing , Health Personnel , Immunity, HumoralABSTRACT
Background: Patients with primary and secondary antibody deficiency are vulnerable to COVID-19 and demonstrate diminished responses following two-dose SARS-CoV-2 vaccine schedules. Third primary vaccinations have been deployed to enhance their humoral and cellular immunity. Objectives: To determine the immunogenicity of the third primary SARS-CoV-2 immunisation in a heterogeneous cohort of patients with antibody deficiency. Methods: Participants enrolled in the COV-AD study were sampled before and after their third vaccine dose. Serological and cellular responses were determined using ELISA, live-virus neutralisation and ELISPOT assays. Results: Following a two-dose schedule, 100% of healthy controls mounted a serological response to SARS-CoV-2 vaccination, however, 38.6% of individuals with antibody deficiency remained seronegative. A third primary SARS-CoV-2 vaccine significantly increased anti-spike glycoprotein antibody seroprevalence from 61.4% to 76.0%, the magnitude of the antibody response, its neutralising capacity and induced seroconversion in individuals who were seronegative after two vaccine doses. Vaccine-induced serological responses were broadly cross-reactive against the SARS-CoV-2 B.1.1.529 variant of concern, however, seroprevalence and antibody levels remained significantly lower than healthy controls. No differences in serological responses were observed between individuals who received AstraZeneca ChAdOx1 nCoV-19 and Pfizer BioNTech 162b2 during their initial two-dose vaccine schedule. SARS-CoV-2 infection-naive participants who had received a heterologous vaccine as a third dose were significantly more likely to have a detectable T cell response following their third vaccine dose (61.5% vs 11.1%). Conclusion: These data support the widespread use of third primary immunisations to enhance humoral immunity against SARS-CoV-2 in individuals with antibody deficiency.
Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , Antibody Formation , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2 , Seroepidemiologic Studies , VaccinationABSTRACT
BACKGROUND: Vaccination prevents severe morbidity and mortality from COVID-19 in the general population. The immunogenicity and efficacy of SARS-CoV-2 vaccines in patients with antibody deficiency is poorly understood. OBJECTIVES: COVID-19 in patients with antibody deficiency (COV-AD) is a multi-site UK study that aims to determine the immune response to SARS-CoV-2 infection and vaccination in patients with primary or secondary antibody deficiency, a population that suffers from severe and recurrent infection and does not respond well to vaccination. METHODS: Individuals on immunoglobulin replacement therapy or with an IgG less than 4 g/L receiving antibiotic prophylaxis were recruited from April 2021. Serological and cellular responses were determined using ELISA, live-virus neutralisation and interferon gamma release assays. SARS-CoV-2 infection and clearance were determined by PCR from serial nasopharyngeal swabs. RESULTS: A total of 5.6% (n = 320) of the cohort reported prior SARS-CoV-2 infection, but only 0.3% remained PCR positive on study entry. Seropositivity, following two doses of SARS-CoV-2 vaccination, was 54.8% (n = 168) compared with 100% of healthy controls (n = 205). The magnitude of the antibody response and its neutralising capacity were both significantly reduced compared to controls. Participants vaccinated with the Pfizer/BioNTech vaccine were more likely to be seropositive (65.7% vs. 48.0%, p = 0.03) and have higher antibody levels compared with the AstraZeneca vaccine (IgGAM ratio 3.73 vs. 2.39, p = 0.0003). T cell responses post vaccination was demonstrable in 46.2% of participants and were associated with better antibody responses but there was no difference between the two vaccines. Eleven vaccine-breakthrough infections have occurred to date, 10 of them in recipients of the AstraZeneca vaccine. CONCLUSION: SARS-CoV-2 vaccines demonstrate reduced immunogenicity in patients with antibody deficiency with evidence of vaccine breakthrough infection.
Subject(s)
COVID-19 , Primary Immunodeficiency Diseases , Viral Vaccines , Antibodies, Viral , COVID-19 Vaccines , Humans , SARS-CoV-2ABSTRACT
Extension of the interval between vaccine doses for the BNT162b2 mRNA vaccine was introduced in the United Kingdom to accelerate population coverage with a single dose. At this time, trial data were lacking, and we addressed this in a study of United Kingdom healthcare workers. The first vaccine dose induced protection from infection from the circulating alpha (B.1.1.7) variant over several weeks. In a substudy of 589 individuals, we show that this single dose induces severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (NAb) responses and a sustained B and T cell response to the spike protein. NAb levels were higher after the extended dosing interval (6-14 weeks) compared with the conventional 3- to 4-week regimen, accompanied by enrichment of CD4+ T cells expressing interleukin-2 (IL-2). Prior SARS-CoV-2 infection amplified and accelerated the response. These data on dynamic cellular and humoral responses indicate that extension of the dosing interval is an effective immunogenic protocol.
Subject(s)
COVID-19 Vaccines/immunology , Vaccines, Synthetic/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Cross-Priming/immunology , Dose-Response Relationship, Immunologic , Ethnicity , Female , Humans , Immunity , Immunoglobulin G/immunology , Linear Models , Male , Middle Aged , Reference Standards , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Treatment Outcome , Young AdultABSTRACT
OBJECTIVE: To determine clinical and ethnodemographic correlates of serological responses against the SARS-CoV-2 spike glycoprotein following mild-to-moderate COVID-19. DESIGN: A retrospective cohort study of healthcare workers who had self-isolated due to COVID-19. SETTING: University Hospitals Birmingham NHS Foundation Trust, UK (UHBFT). PARTICIPANTS: 956 healthcare workers were recruited by open invitation via UHBFT trust email and social media between 27 April 2020 and the 8 June 2020. INTERVENTION: Participants volunteered a venous blood sample that was tested for the presence of anti-SARS-CoV-2 spike glycoprotein antibodies. Results were interpreted in the context of the symptoms of their original illness and ethnodemographic variables. RESULTS: Using an assay that simultaneously measures the combined IgG, IgA and IgM response against the spike glycoprotein (IgGAM), the overall seroprevalence within this cohort was 46.2% (n=442/956). The seroprevalence of immunoglobulin isotypes was 36.3%, 18.7% and 8.1% for IgG, IgA and IgM, respectively. IgGAM identified serological responses in 40.6% (n=52/128) of symptomatic individuals who reported a negative SARS-CoV-2 PCR test. Increasing age, non-white ethnicity and obesity were independently associated with greater IgG antibody response against the spike glycoprotein. Self-reported fever and fatigue were associated with greater IgG and IgA responses against the spike glycoprotein. The combination of fever and/or cough and/or anosmia had a positive predictive value of 92.3% for seropositivity in self-isolating individuals a time when Wuhan strain SARS-CoV-2 was predominant. CONCLUSIONS AND RELEVANCE: Assays employing combined antibody detection demonstrate enhanced seroepidemiological sensitivity and can detect prior viral exposure even when PCR swabs have been negative. We demonstrate an association between known ethnodemographic risk factors associated with mortality from COVID-19 and the magnitude of serological responses in mild-to-moderate disease.
Subject(s)
Antibodies, Viral/blood , Antibody Formation , COVID-19 , Adult , COVID-19/immunology , Female , Health Personnel , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Retrospective Studies , Seroepidemiologic Studies , United KingdomABSTRACT
OBJECTIVE: To determine the rates of asymptomatic viral carriage and seroprevalence of SARS-CoV-2 antibodies in healthcare workers. DESIGN: A cross-sectional study of asymptomatic healthcare workers undertaken on 24/25 April 2020. SETTING: University Hospitals Birmingham NHS Foundation Trust (UHBFT), UK. PARTICIPANTS: 545 asymptomatic healthcare workers were recruited while at work. Participants were invited to participate via the UHBFT social media. Exclusion criteria included current symptoms consistent with COVID-19. No potential participants were excluded. INTERVENTION: Participants volunteered a nasopharyngeal swab and a venous blood sample that were tested for SARS-CoV-2 RNA and anti-SARS-CoV-2 spike glycoprotein antibodies, respectively. Results were interpreted in the context of prior illnesses and the hospital departments in which participants worked. MAIN OUTCOME MEASURE: Proportion of participants demonstrating infection and positive SARS-CoV-2 serology. RESULTS: The point prevalence of SARS-CoV-2 viral carriage was 2.4% (n=13/545). The overall seroprevalence of SARS-CoV-2 antibodies was 24.4% (n=126/516). Participants who reported prior symptomatic illness had higher seroprevalence (37.5% vs 17.1%, χ2=21.1034, p<0.0001) and quantitatively greater antibody responses than those who had remained asymptomatic. Seroprevalence was greatest among those working in housekeeping (34.5%), acute medicine (33.3%) and general internal medicine (30.3%), with lower rates observed in participants working in intensive care (14.8%). BAME (Black, Asian and minority ethnic) ethnicity was associated with a significantly increased risk of seropositivity (OR: 1.92, 95% CI 1.14 to 3.23, p=0.01). Working on the intensive care unit was associated with a significantly lower risk of seropositivity compared with working in other areas of the hospital (OR: 0.28, 95% CI 0.09 to 0.78, p=0.02). CONCLUSIONS AND RELEVANCE: We identify differences in the occupational risk of exposure to SARS-CoV-2 between hospital departments and confirm asymptomatic seroconversion occurs in healthcare workers. Further investigation of these observations is required to inform future infection control and occupational health practices.