Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
J Inflamm Res ; 14: 4313-4328, 2021.
Article in English | MEDLINE | ID: covidwho-1417005


PURPOSE: This study aimed to understand the pathophysiology of host responses to infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/(COVID-19) and Middle East respiratory syndrome coronavirus (MERS-CoV) and to identify proteins for patient stratification with different grades of illness severity. PATIENTS AND METHODS: Peripheral blood samples from 43 patients with different grades of COVID-19, 7 MERS-CoV patients admitted to the ICU, and 10 healthy subjects were analyzed using label-free quantitative liquid chromatography-mass spectrometry (LC-MS). RESULTS: We identified 193 and 91 proteins that differed significantly between COVID-19 and MERS-CoV sample groups, respectively, and 49 overlapped between datasets. Only 10 proteins are diagnostic of asymptomatic cases, 12 are prognostic of recovery from severe illness, and 28 are prognostic of a fatal outcome of COVID-19. These proteins are implicated in virus-specific/related signaling networks. Notable among the top canonical pathways are humoral immunity, inflammation, acute-phase response signaling, liver X receptor/retinoid X receptor (LXR/RXR) activation, coagulation, and the complement system. Furthermore, we confirmed positive viral shedding in 11.76% of 51 additional peripheral blood samples, indicating that caution should be taken to avoid the possible risk of transfusion of infected blood products. CONCLUSION: We identified COVID-19 and MERS-CoV protein panels that have potential as biomarkers and might assist in the prognosis of SARS-CoV-2 infection. The identified markers further our understanding of COVID-19 disease pathophysiology and may have prognostic or therapeutic potential in predicting or managing host cell responses to human COVID-19 and MERS-CoV infections.

J Clin Microbiol ; 59(5)2021 04 20.
Article in English | MEDLINE | ID: covidwho-1121790


Combating the ongoing coronavirus disease 2019 (COVID-19) pandemic demands accurate, rapid, and point-of-care testing with fast results to triage cases for isolation and treatment. The current testing relies on reverse transcriptase PCR (RT-PCR), which is routinely performed in well-equipped laboratories by trained professionals at specific locations. However, during busy periods, high numbers of samples queued for testing can delay the test results, impacting efforts to reduce the infection risk. Besides, the absence of well-established laboratories at remote sites and low-resourced environments can contribute to a silent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These reasons compel the need to accommodate point-of-care testing for COVID-19 that meets the ASSURED criteria (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable). This study assessed the agreement and accuracy of the portable Biomeme SARS-CoV-2 system against the gold standard tests. Nasopharyngeal and nasal swabs were used. Of the 192 samples tested using the Biomeme SARS-CoV-2 system, the results from 189 samples (98.4%) were in agreement with the reference standard-of-care RT-PCR testing for SARS-CoV-2. The portable system generated simultaneous results for nine samples in 80 min with high positive and negative percent agreements of 99.0% and 97.8%, respectively. We performed separate testing in a sealed glove box, offering complete biosafety containment. Thus, the Biomeme SARS-CoV-2 system can help decentralize COVID-19 testing and offer rapid test results for patients in remote and low-resourced settings.

COVID-19 Nucleic Acid Testing/instrumentation , COVID-19/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Humans , SARS-CoV-2 , Sensitivity and Specificity