Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
ACS Sustain Chem Eng ; 10(1): 245-258, 2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-1616947

ABSTRACT

The latest epidemic of extremely infectious coronavirus disease 2019 (COVID-19) has created a significant public health concern. Despite substantial efforts to contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within a specific location, shortcomings in the surveillance of predominantly asymptomatic infections constrain attempts to identify the epidemiological spread of the virus. Continuous surveillance of wastewater streams, including sewage, offers opportunities to track the spread of SARS-CoV-2, which is believed to be found in fecal waste. To demonstrate the feasibility of SARS-CoV-2 detection in wastewater systems, we herein present a novel facilely constructed fluorescence sensing array based on a panel of three different lanthanide-doped carbon nanoparticles (LnCNPs). The differential fluorescence response pattern due to the counterion-ligand interactions allowed us to employ powerful pattern recognition to effectively detect SARS-CoV-2 and differentiate it from other viruses or bacteria. The sensor results were benchmarked to the gold standard RT-qPCR, and the sensor showed excellent sensitivity (1.5 copies/µL) and a short sample-to-results time of 15 min. This differential response of the sensor array was also explained from the differential mode of binding of the LnCNPs with the surface proteins of the studied bacteria and viruses. Therefore, the developed sensor array provides a cost-effective, community diagnostic tool that could be potentially used as a novel epidemiologic surveillance approach to mitigate the spread of COVID-19.

2.
Biosens Bioelectron ; 200: 113900, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1588212

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the major shortcoming of healthcare systems globally in their inability to diagnose the disease rapidly and accurately. At present, the molecular approaches for diagnosing COVID-19 primarily use reverse transcriptase polymerase chain reaction (RT-PCR) to create and amplify cDNA from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. Although molecular tests are reported to be specific, false negatives are quite common. Furthermore, literally all these tests require a step involving RNA isolation which does not make them point-of-care (POC) in the true sense. Here, we report a lateral flow strip-based RNA extraction and amplification-free nucleic acid test (NAT) for rapid diagnosis of positive COVID-19 cases at POC. The assay uses highly specific 6-carboxyfluorescein (6-FAM) and biotin labeled antisense oligonucleotides (ASOs) as probes those are designed to target N-gene sequence of SARS-CoV-2. Additionally, we utilized cysteamine capped gold-nanoparticles (Cyst-AuNPs) to augment the signal further for enhanced sensitivity. Without any large-stationary equipment and highly trained staffers, the entire sample-to-answer approach in our case would take less than 30 min from a patient swab sample collection to final diagnostic result. Moreover, when evaluated with 60 clinical samples and verified with an FDA-approved TaqPath RT-PCR kit for COVID-19 diagnosis, the assay obtained almost 99.99% accuracy and specificity. We anticipate that the newly established low-cost amplification-free detection of SARS-CoV-2 RNA will aid in the development of a platform technology for rapid and POC diagnosis of COVID-19 and other pathogens.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , COVID-19 Testing , Gold , Humans , Nucleic Acid Amplification Techniques , Point-of-Care Systems , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity
3.
ACS Nano ; 2021 Jul 19.
Article in English | MEDLINE | ID: covidwho-1316699

ABSTRACT

Efficient monitoring of SARS-CoV-2 outbreak requires the use of a sensitive and rapid diagnostic test. Although SARS-CoV-2 RNA can be detected by RT-qPCR, the molecular-level quantification of the viral load is still challenging, time-consuming, and labor-intensive. Here, we report an ultrasensitive hyperspectral sensor (HyperSENSE) based on hafnium nanoparticles (HfNPs) for specific detection of COVID-19 causative virus, SARS-CoV-2. Density functional theoretical calculations reveal that HfNPs exhibit higher changes in their absorption wavelength and light scattering when bound to their target SARS-CoV-2 RNA sequence relative to the gold nanoparticles. The assay has a turnaround time of a few seconds and has a limit of detection in the yoctomolar range, which is 1 000 000-fold times higher than the currently available COVID-19 tests. We demonstrated in ∼100 COVID-19 clinical samples that the assay is highly sensitive and has a specificity of 100%. We also show that HyperSENSE can rapidly detect other viruses such as influenza A H1N1. The outstanding sensitivity indicates the potential of the current biosensor in detecting the prevailing presymptomatic and asymptomatic COVID-19 cases. Thus, integrating hyperspectral imaging with nanomaterials establishes a diagnostic platform for ultrasensitive detection of COVID-19 that can potentially be applied to any emerging infectious pathogen.

4.
Chem Commun (Camb) ; 57(51): 6229-6232, 2021 Jun 24.
Article in English | MEDLINE | ID: covidwho-1246405

ABSTRACT

Tracking the viral progression of SARS-CoV-2 in COVID-19 infected body tissues is an emerging need of the current pandemic. Imaging at near infrared second biological window (NIR-II) offers striking benefits over the other technologies to explore deep-tissue information. Here we design, synthesise and characterise a molecular probe that selectively targets the N-gene of SARS-CoV-2. Highly specific antisense oligonucleotides (ASOs) were conjugated to lead sulfide quantum dots using a UV-triggered thiol-ene click chemistry for the recognition of viral RNA. Our ex vivo imaging studies demonstrated that the probe exhibits aggregation induced NIR-II emission only in presence of SARS-CoV-2 RNA which can be attributed to the efficient hybridisation of the ASOs with their target RNA strands.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , Fluorescent Dyes/chemistry , Oligonucleotides, Antisense/chemistry , Quantum Dots/chemistry , SARS-CoV-2/isolation & purification , Spectroscopy, Near-Infrared/methods , Animals , COVID-19/diagnostic imaging , COVID-19/metabolism , Click Chemistry/methods , Fluorescent Dyes/chemical synthesis , Humans , Lung/diagnostic imaging , Lung/metabolism , Lung/virology , Metal Nanoparticles/chemistry , Mice , Mice, Inbred BALB C , Models, Animal , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
5.
Biotechnol Bioeng ; 118(8): 3029-3036, 2021 08.
Article in English | MEDLINE | ID: covidwho-1219688

ABSTRACT

Airborne spread of coronavirus disease 2019 (COVID-19) by infectious aerosol is all but certain. However, easily implemented approaches to assess the actual environmental threat are currently unavailable. We present a simple approach with the potential to rapidly provide information about the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the atmosphere at any location. We used a portable dehumidifier as a readily available and affordable tool to collect airborne virus in the condensate. The dehumidifiers were deployed in selected locations of a hospital ward with patients reporting flu-like symptoms which could possibly be due to COVID-19 over three separate periods of one week. Samples were analyzed frequently for both virus envelope protein and SARS-CoV-2 RNA. In several samples across separate deployments, condensate from dehumidifiers tested positive for the presence of SARS-CoV-2 antigens as confirmed using two independent assays. RNA was detected, but not attributable to SARS-CoV-2. We verified the ability of the dehumidifier to rapidly collect aerosolized sodium chloride. Our results point to a facile pool testing method to sample air in any location in the world and assess the presence and concentration of an infectious agent to obtain quantitative risk assessment of exposure, designate zones as "hot spots" and minimize the need for individual testing which may often be time consuming, expensive, and laborious.


Subject(s)
COVID-19/genetics , RNA, Viral , SARS-CoV-2 , Specimen Handling , COVID-19/epidemiology , COVID-19/transmission , Humans , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/genetics
6.
Nat Protoc ; 16(6): 3141-3162, 2021 06.
Article in English | MEDLINE | ID: covidwho-1209962

ABSTRACT

The global pandemic of coronavirus disease 2019 (COVID-19) highlights the shortcomings of the current testing paradigm for viral disease diagnostics. Here, we report a stepwise protocol for an RNA-extraction-free nano-amplified colorimetric test for rapid and naked-eye molecular diagnosis of COVID-19. The test employs a unique dual-prong approach that integrates nucleic acid (NA) amplification and plasmonic sensing for point-of-care detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with a sample-to-assay response time of <1 h. The RNA-extraction-free nano-amplified colorimetric test utilizes plasmonic gold nanoparticles capped with antisense oligonucleotides (ASOs) as a colorimetric reporter to detect the amplified nucleic acid from the COVID-19 causative virus, SARS-CoV-2. The ASOs are specific for the SARS-CoV-2 N-gene, and binding of the ASOs to their target sequence results in the aggregation of the plasmonic gold nanoparticles. This highly specific agglomeration step leads to a change in the plasmonic response of the nanoparticles. Furthermore, when tested using clinical samples, the accuracy, sensitivity and specificity of the test were found to be >98.4%, >96.6% and 100%, respectively, with a detection limit of 10 copies/µL. The test can easily be adapted to diagnose other viral infections with a simple modification of the ASOs and primer sequences. It also provides a low-cost, rapid approach requiring minimal instrumentation that can be used as a screening tool for the diagnosis of COVID-19 at point-of-care settings in resource-poor situations. The colorimetric readout of the test can even be monitored using a handheld optical reader to obtain a quantitative response. Therefore, we anticipate that this protocol will be widely useful for the development of biosensors for the molecular diagnostics of COVID-19 and other infectious diseases.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Gold/chemistry , Metal Nanoparticles/chemistry , Oligonucleotides, Antisense/chemistry , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , COVID-19/virology , COVID-19 Nucleic Acid Testing/instrumentation , Colorimetry/instrumentation , Colorimetry/methods , Humans , Limit of Detection , Oligonucleotides, Antisense/genetics , Point-of-Care Testing , RNA, Viral/genetics , SARS-CoV-2/genetics
7.
ACS Nano ; 2020 Oct 20.
Article in English | MEDLINE | ID: covidwho-880666

ABSTRACT

A large-scale diagnosis of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is essential to downregulate its spread within as well as across communities and mitigate the current outbreak of the pandemic novel coronavirus disease 2019 (COVID-19). Herein, we report the development of a rapid (less than 5 min), low-cost, easy-to-implement, and quantitative paper-based electrochemical sensor chip to enable the digital detection of SARS-CoV-2 genetic material. The biosensor uses gold nanoparticles (AuNPs), capped with highly specific antisense oligonucleotides (ssDNA) targeting viral nucleocapsid phosphoprotein (N-gene). The sensing probes are immobilized on a paper-based electrochemical platform to yield a nucleic-acid-testing device with a readout that can be recorded with a simple hand-held reader. The biosensor chip has been tested using samples collected from Vero cells infected with SARS-CoV-2 virus and clinical samples. The sensor provides a significant improvement in output signal only in the presence of its target-SARS-CoV-2 RNA-within less than 5 min of incubation time, with a sensitivity of 231 (copies µL-1)-1 and limit of detection of 6.9 copies/µL without the need for any further amplification. The sensor chip performance has been tested using clinical samples from 22 COVID-19 positive patients and 26 healthy asymptomatic subjects confirmed using the FDA-approved RT-PCR COVID-19 diagnostic kit. The sensor successfully distinguishes the positive COVID-19 samples from the negative ones with almost 100% accuracy, sensitivity, and specificity and exhibits an insignificant change in output signal for the samples lacking a SARS-CoV-2 viral target segment (e.g., SARS-CoV, MERS-CoV, or negative COVID-19 samples collected from healthy subjects). The feasibility of the sensor even during the genomic mutation of the virus is also ensured from the design of the ssDNA-conjugated AuNPs that simultaneously target two separate regions of the same SARS-CoV-2 N-gene.

8.
ACS Nano ; 14(6): 7617-7627, 2020 06 23.
Article in English | MEDLINE | ID: covidwho-647565

ABSTRACT

The current outbreak of the pandemic coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) demands its rapid, convenient, and large-scale diagnosis to downregulate its spread within as well as across the communities. But the reliability, reproducibility, and selectivity of majority of such diagnostic tests fail when they are tested either to a viral load at its early representation or to a viral gene mutated during its current spread. In this regard, a selective "naked-eye" detection of SARS-CoV-2 is highly desirable, which can be tested without accessing any advanced instrumental techniques. We herein report the development of a colorimetric assay based on gold nanoparticles (AuNPs), when capped with suitably designed thiol-modified antisense oligonucleotides (ASOs) specific for N-gene (nucleocapsid phosphoprotein) of SARS-CoV-2, could be used for diagnosing positive COVID-19 cases within 10 min from the isolated RNA samples. The thiol-modified ASO-capped AuNPs agglomerate selectively in the presence of its target RNA sequence of SARS-CoV-2 and demonstrate a change in its surface plasmon resonance. Further, the addition of RNaseH cleaves the RNA strand from the RNA-DNA hybrid leading to a visually detectable precipitate from the solution mediated by the additional agglomeration among the AuNPs. The selectivity of the assay has been monitored in the presence of MERS-CoV viral RNA with a limit of detection of 0.18 ng/µL of RNA having SARS-CoV-2 viral load. Thus, the current study reports a selective and visual "naked-eye" detection of COVID-19 causative virus, SARS-CoV-2, without the requirement of any sophisticated instrumental techniques.


Subject(s)
Betacoronavirus/genetics , Biosensing Techniques/methods , Coronavirus Infections/diagnosis , Metal Nanoparticles , Nucleocapsid Proteins/genetics , Oligonucleotides, Antisense/genetics , Pneumonia, Viral/diagnosis , Base Sequence , Betacoronavirus/isolation & purification , COVID-19 , Colorimetry/methods , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Genes, Viral , Gold , Humans , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Nanotechnology/methods , Pandemics , Phosphoproteins , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , RNA Caps/genetics , RNA, Viral/genetics , SARS-CoV-2 , Surface Plasmon Resonance/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...