Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
The Lancet Regional Health - Europe ; : 100352, 2022.
Article in English | ScienceDirect | ID: covidwho-1799798

ABSTRACT

Summary Background Workplaces are an important potential source of SARS-CoV-2 exposure;however, investigation into workplace contact patterns is lacking. This study aimed to investigate how workplace attendance and features of contact varied between occupations across the COVID-19 pandemic in England. Methods Data were obtained from electronic contact diaries (November 2020-November 2021) submitted by employed/self-employed prospective cohort study participants (n=4,616). We used mixed models to investigate the effects of occupation and time for: workplace attendance, number of people sharing workspace, time spent sharing workspace, number of close contacts, and usage of face coverings. Findings Workplace attendance and contact patterns varied across occupations and time. The predicted probability of intense space sharing during the day was highest for healthcare (78% [95% CI: 75–81%]) and education workers (64% [59%–69%]), who also had the highest probabilities for larger numbers of close contacts (36% [32%–40%] and 38% [33%–43%] respectively). Education workers also demonstrated relatively low predicted probability (51% [44%–57%]) of wearing a face covering during close contact. Across all occupational groups, workspace sharing and close contact increased and usage of face coverings decreased during phases of less stringent restrictions. Interpretation Major variations in workplace contact patterns and mask use likely contribute to differential COVID-19 risk. Patterns of variation by occupation and restriction phase may inform interventions for future waves of COVID-19 or other respiratory epidemics. Across occupations, increasing workplace contact and reduced face covering usage is concerning given ongoing high levels of community transmission and emergence of variants. Funding Medical Research Council;HM Government;Wellcome Trust

2.
Wellcome Open Res ; 6: 224, 2021.
Article in English | MEDLINE | ID: covidwho-1780277

ABSTRACT

Introduction: Increased transmissibility of B.1.1.7 variant of concern (VOC) in the UK may explain its rapid emergence and global spread. We analysed data from putative household infector - infectee pairs in the Virus Watch Community cohort study to assess the serial interval of COVID-19 and whether this was affected by emergence of the B.1.1.7 variant. Methods: The Virus Watch study is an online, prospective, community cohort study following up entire households in England and Wales during the COVID-19 pandemic. Putative household infector-infectee pairs were identified where more than one person in the household had a positive swab matched to an illness episode. Data on whether or not individual infections were caused by the B.1.1.7 variant were not available. We therefore developed a classification system based on the percentage of cases estimated to be due to B.1.1.7 in national surveillance data for different English regions and study weeks. Results: Out of 24,887 illnesses reported, 915 tested positive for SARS-CoV-2 and 186 likely 'infector-infectee' pairs in 186 households amongst 372 individuals were identified. The mean COVID-19 serial interval was 3.18 (95%CI: 2.55 - 3.81) days. There was no significant difference (p=0.267) between the mean serial interval for VOC hotspots (mean = 3.64 days, (95%CI: 2.55 - 4.73)) days and non-VOC hotspots, (mean = 2.72 days, (95%CI: 1.48 - 3.96)). Conclusions: Our estimates of the average serial interval of COVID-19 are broadly similar to estimates from previous studies and we find no evidence that B.1.1.7 is associated with a change in serial intervals.  Alternative explanations such as increased viral load, longer period of viral shedding or improved receptor binding may instead explain the increased transmissibility and rapid spread and should undergo further investigation.

3.
Vaccine ; 39(48): 7108-7116, 2021 11 26.
Article in English | MEDLINE | ID: covidwho-1458555

ABSTRACT

BACKGROUND: Vaccination intention is key to the success of any vaccination programme, alongside vaccine availability and access. Public intention to take a COVID-19 vaccine is high in England and Wales compared to other countries, but vaccination rate disparities between ethnic, social and age groups has led to concern. METHODS: Online survey of prospective household community cohort study participants across England and Wales (Virus Watch). Vaccination intention was measured by individual participant responses to 'Would you accept a COVID-19 vaccine if offered?', collected in December 2020 and February 2021. Responses to a 13-item questionnaire collected in January 2021 were analysed using factor analysis to investigate psychological influences on vaccination intention. RESULTS: Survey response rate was 56% (20,785/36,998) in December 2020 and 53% (20,590/38,727) in February 2021, with 14,880 adults reporting across both time points. In December 2020, 1,469 (10%) participants responded 'No' or 'Unsure'. Of these people, 1,266 (86%) changed their mind and responded 'Yes' or 'Already had a COVID-19 vaccine' by February 2021. Vaccination intention increased across all ethnic groups and levels of social deprivation. Age was most strongly associated with vaccination intention, with 16-24-year-olds more likely to respond "Unsure" or "No" versus "Yes" than 65-74-year-olds in December 2020 (OR: 4.63, 95 %CI: 3.42, 6.27 & OR 7.17 95 %CI: 4.26, 12.07 respectively) and February 2021 (OR: 27.92 95 %CI: 13.79, 56.51 & OR 17.16 95 %CI: 4.12, 71.55). The association between ethnicity and vaccination intention weakened, but did not disappear, over time. Both vaccine- and illness-related psychological factors were shown to influence vaccination intention. CONCLUSIONS: Four in five adults (86%) who were reluctant or intending to refuse a COVID-19 vaccine in December 2020 had changed their mind in February 2021 and planned to accept, or had already accepted, a vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Cohort Studies , England , Humans , Intention , Prospective Studies , SARS-CoV-2 , Vaccination , Wales/epidemiology
5.
BMJ Open ; 11(6): e048042, 2021 06 23.
Article in English | MEDLINE | ID: covidwho-1285085

ABSTRACT

INTRODUCTION: The coronavirus (COVID-19) pandemic has caused significant global mortality and impacted lives around the world. Virus Watch aims to provide evidence on which public health approaches are most likely to be effective in reducing transmission and impact of the virus, and will investigate community incidence, symptom profiles and transmission of COVID-19 in relation to population movement and behaviours. METHODS AND ANALYSIS: Virus Watch is a household community cohort study of acute respiratory infections in England and Wales and will run from June 2020 to August 2021. The study aims to recruit 50 000 people, including 12 500 from minority ethnic backgrounds, for an online survey cohort and monthly antibody testing using home fingerprick test kits. Nested within this larger study will be a subcohort of 10 000 individuals, including 3000 people from minority ethnic backgrounds. This cohort of 10 000 people will have full blood serology taken between October 2020 and January 2021 and repeat serology between May 2021 and August 2021. Participants will also post self-administered nasal swabs for PCR assays of SARS-CoV-2 and will follow one of three different PCR testing schedules based on symptoms. ETHICS AND DISSEMINATION: This study has been approved by the Hampstead National Health Service (NHS) Health Research Authority Ethics Committee (ethics approval number 20/HRA/2320). We are monitoring participant queries and using these to refine methodology where necessary, and are providing summaries and policy briefings of our preliminary findings to inform public health action by working through our partnerships with our study advisory group, Public Health England, NHS and government scientific advisory panels.


Subject(s)
COVID-19 , Guideline Adherence/statistics & numerical data , Patient Acceptance of Health Care/statistics & numerical data , Public Health , COVID-19/epidemiology , England/epidemiology , Humans , Prospective Studies , Risk Factors , State Medicine , Wales/epidemiology
6.
Wellcome Open Res ; 5: 225, 2020.
Article in English | MEDLINE | ID: covidwho-1106516

ABSTRACT

Background: Diagnostic testing forms a major part of the UK's response to the current coronavirus disease 2019 (COVID-19) pandemic with tests offered to anyone with a continuous cough, high temperature or anosmia. Testing capacity must be sufficient during the winter respiratory season when levels of cough and fever are high due to non-COVID-19 causes. This study aims to make predictions about the contribution of baseline cough or fever to future testing demand in the UK. Methods: In this analysis of the Bug Watch prospective community cohort study, we estimated the incidence of cough or fever in England in 2018-2019. We then estimated the COVID-19 diagnostic testing rates required in the UK for baseline cough or fever cases for the period July 2020-June 2021. This was explored for different rates of the population requesting tests and four COVID-19 second wave scenarios. Estimates were then compared to current national capacity. Results: The baseline incidence of cough or fever in the UK is expected to rise rapidly from 154,554 (95%CI 103,083 - 231,725) cases per day in August 2020 to 250,708 (95%CI 181,095 - 347,080) in September, peaking at 444,660 (95%CI 353,084 - 559,988) in December. If 80% of baseline cough or fever cases request tests, average daily UK testing demand would exceed current capacity for five consecutive months (October 2020 to February 2021), with a peak demand of 147,240 (95%CI 73,978 - 239,502) tests per day above capacity in December 2020. Conclusions: Our results show that current national COVID-19 testing capacity is likely to be exceeded by demand due to baseline cough and fever alone. This study highlights that the UK's response to the COVID-19 pandemic must ensure that a high proportion of people with symptoms request tests, and that testing capacity is immediately scaled up to meet this high predicted demand.

7.
Wellcome Open Res ; 5: 145, 2020.
Article in English | MEDLINE | ID: covidwho-1069987

ABSTRACT

Background: In the context of the current coronavirus disease 2019 (COVID-19) pandemic, understanding household transmission of seasonal coronaviruses may inform pandemic control. We aimed to investigate what proportion of seasonal coronavirus transmission occurred within households, measure the risk of transmission in households, and describe the impact of household-related factors of risk of transmission. Methods: Using data from three winter seasons of the UK Flu Watch cohort study, we measured the proportion of symptomatic infections acquired outside and within the home, the household transmission risk and the household secondary attack risk for PCR-confirmed seasonal coronaviruses. We present transmission risk stratified by demographic features of households. Results: We estimated that the proportion of cases acquired outside the home, weighted by age and region, was 90.7% (95% CI 84.6- 94.5, n=173/195) and within the home was 9.3% (5.5-15.4, 22/195). Following a symptomatic coronavirus index case, 14.9% (9.8 - 22.1, 20/134) of households experienced symptomatic transmission to at least one other household member. Onward transmission risk ranged from 11.90% (4.84-26.36, 5/42) to 19.44% (9.21-36.49, 7/36) by strain. The overall household secondary attack risk for symptomatic cases was 8.00% (5.31-11.88, 22/275), ranging across strains from 5.10 (2.11-11.84, 5/98) to 10.14 (4.82- 20.11, 7/69). Median clinical onset serial interval was 7 days (IQR= 6-9.5). Households including older adults, 3+ children, current smokers, contacts with chronic health conditions, and those in relatively deprived areas had the highest transmission risks. Child index cases and male index cases demonstrated the highest transmission risks. Conclusion: Most seasonal coronaviruses appear to be acquired outside the household, with relatively modest risk of onward transmission within households. Transmission risk following an index case appears to vary by demographic household features, with potential overlap between those demonstrating the highest point estimates for seasonal coronavirus transmission risk and COVID-19 susceptibility and poor illness outcomes.

8.
Wellcome Open Res ; 5: 52, 2020.
Article in English | MEDLINE | ID: covidwho-1068025

ABSTRACT

Background: There is currently a pandemic caused by the novel coronavirus SARS-CoV-2. The intensity and duration of this first wave in the UK may be dependent on whether SARS-CoV-2 transmits more effectively in the winter than the summer and the UK Government response is partially built upon the assumption that those infected will develop immunity to reinfection in the short term. In this paper we examine evidence for seasonality and immunity to laboratory-confirmed seasonal coronavirus (HCoV) from a prospective cohort study in England. Methods: In this analysis of the Flu Watch cohort, we examine seasonal trends for PCR-confirmed coronavirus infections (HCoV-NL63, HCoV-OC43, and HCoV-229E) in all participants during winter seasons (2006-2007, 2007-2008, 2008-2009) and during the first wave of the 2009 H1N1 influenza pandemic (May-Sep 2009). We also included data from the pandemic and 'post-pandemic' winter seasons (2009-2010 and 2010-2011) to identify individuals with two confirmed HCoV infections and examine evidence for immunity against homologous reinfection. Results: We tested 1,104 swabs taken during respiratory illness and detected HCoV in 199 during the first four seasons. The rate of confirmed HCoV infection across all seasons was 390 (95% CI 338-448) per 100,000 person-weeks; highest in the Nov-Mar 2008/9 season at 674 (95%CI 537-835). The highest rate was in February at 759 (95% CI 580-975). Data collected during May-Sep 2009 showed there was small amounts of ongoing transmission, with four cases detected during this period. Eight participants had two confirmed infections, of which none had the same strain twice. Conclusion: Our results provide evidence that HCoV infection in England is most intense in winter, but that there is a small amount of ongoing transmission during summer periods. We found some evidence of immunity against homologous reinfection.

9.
Wellcome Open Research ; 2020.
Article in English | ProQuest Central | ID: covidwho-916554

ABSTRACT

Background: Cross-sectional studies indicate that up to 80% of active SARS-CoV-2 infections may be asymptomatic. However, accurate estimates of the asymptomatic proportion require systematic detection and follow-up to differentiate between truly asymptomatic and pre-symptomatic cases. We conducted a rapid review and meta-analysis of the asymptomatic proportion of PCR-confirmed SARS-CoV-2 infections based on methodologically appropriate studies in community settings. Methods: We searched Medline and EMBASE for peer-reviewed articles, and BioRxiv and MedRxiv for pre-prints published before 25/08/2020. We included studies based in community settings that involved systematic PCR testing on participants and follow-up symptom monitoring regardless of symptom status. We extracted data on study characteristics, frequencies of PCR-confirmed infections by symptom status, and (if available) cycle threshold/genome copy number values and/or duration of viral shedding by symptom status, and age of asymptomatic versus (pre)symptomatic cases. We computed estimates of the asymptomatic proportion and 95% confidence intervals for each study and overall using random effect meta-analysis. Results: We screened 1138 studies and included 21. The pooled asymptomatic proportion of SARS-CoV-2 infections was 23% (95% CI 16%-30%). When stratified by testing context, the asymptomatic proportion ranged from 6% (95% CI 0-17%) for household contacts to 47% (95% CI 21-75%) for non-outbreak point prevalence surveys with follow-up symptom monitoring. Estimates of viral load and duration of viral shedding appeared to be similar for asymptomatic and symptomatic cases based on available data, though detailed reporting of viral load and natural history of viral shedding by symptom status were limited. Evidence into the relationship between age and symptom status was inconclusive. Conclusion: Asymptomatic viral shedding comprises a substantial minority of SARS-CoV-2 infections when estimated using methodologically appropriate studies. Further investigation into variation in the asymptomatic proportion by testing context, the degree and duration of infectiousness for asymptomatic infections, and demographic predictors of symptom status are warranted.

10.
ProQuest Central; 2020.
Preprint in English | ProQuest Central | ID: ppcovidwho-2090

ABSTRACT

Background: International and UK data suggest that Black, Asian and Minority Ethnic (BAME) groups are at increased risk of infection and death from COVID-19. We aimed to explore the risk of death in minority ethnic groups in England using data reported by NHS England. Methods: We used NHS data on patients with a positive COVID-19 test who died in hospitals in England published on 28th April, with deaths by ethnicity available from 1st March 2020 uto 5pm on 21 April 2020. We undertook indirect standardisation of these data (using the whole population of England as the reference) to produce ethnic specific standardised mortality ratios (SMRs) adjusted for age and geographical region. Results: The largest total number of deaths in minority ethnic groups were Indian (492 deaths) and Black Caribbean (460 deaths) groups. Adjusting for region we found a lower risk of death for White Irish (SMR 0.52;95%CIs 0.45-0.60) and White British ethnic groups (0.88;95%CIs 0.86-0.0.89), but increased risk of death for Black African (3.24;95%CIs 2.90-3.62), Black Caribbean (2.21;95%CIs 2.02-2.41), Pakistan(3.29;95%CIs 2.96-3.64), Bangladesh(2.41;95%CIs 1.98-2.91) and Indian (1.70;95%CIs 1.56-1.85) minority ethnic groups. Conclusion: Our analysis adds to the evidence that BAME people are at increased risk of death from COVID-19 even after adjusting for geographical region. We believe there is an urgent need to take action to reduce the risk of death for BAME groups and better understand why some ethnic groups experience greater risk. Actions that are likely to reduce these inequities include ensuring adequate income protection (so that low paid and zero-hours contract workers can afford to follow social distancing recommendations), reducing occupational risks (such as ensuring adequate personal protective equipment), reducing barriers in accessing healthcare and providing culturally and linguistically appropriate public health communications.

11.
ProQuest Central; 2020.
Preprint in English | ProQuest Central | ID: ppcovidwho-2089

ABSTRACT

Background: There is currently a pandemic caused by the novel coronavirus SARS-CoV-2. The intensity and duration of this first wave in the UK may be dependent on whether SARS-CoV-2 transmits more effectively in the winter than the summer and the UK Government response is partially built upon the assumption that those infected will develoimmunity to reinfection in the short term. In this paper we examine evidence for seasonality and immunity to laboratory-confirmed seasonal coronavirus (HCoV) from a prospective cohort study in England. Methods: In this analysis of the Flu Watch cohort, we examine seasonal trends for PCR-confirmed coronavirus infections (HCoV-NL63, HCoV-OC43, and HCoV-229E) in all participants during winter seasons (2006-2007, 2007-2008, 2008-2009) and during the first wave of the 2009 H1N1 influenza pandemic (May-Se2009). We also included data from the pandemic and ‘post-pandemic’ winter seasons (2009-2010 and 2010-2011) to identify individuals with two confirmed HCoV infections and examine evidence for immunity against homologous reinfection. Results: We tested 1,104 swabs taken during respiratory illness and detected HCoV in 199 during the first four seasons. The rate of confirmed HCoV infection across all seasons was 390 (95% C338-448) per 100,000 person-weeks;highest in the Nov-Mar 2008/9 season at 674 (95%C537-835). The highest rate was in February at 759 (95% C580-975). Data collected during May-Se2009 showed there was small amounts of ongoing transmission, with four cases detected during this period. Eight participants had two confirmed infections, of which none had the same strain twice. Conclusion: Our results provide evidence that HCoV infection in England is most intense in winter, but that there is a small amount of ongoing transmission during summer periods. We found some evidence of immunity against homologous reinfection.

12.
ProQuest Central; 2020.
Preprint in English | ProQuest Central | ID: ppcovidwho-2079

ABSTRACT

Background: In the context of the current coronavirus disease 2019 (COVID-19) pandemic, understanding household transmission of seasonal coronaviruses may inform pandemic control. We aimed to investigate what proportion of seasonal coronavirus transmission occurred within households, measure the risk of transmission in households, and describe the impact of household-related factors of risk of transmission. Methods: Using data from three winter seasons of the UK Flu Watch cohort study, we measured the proportion of symptomatic infections acquired outside and within the home, the household transmission risk and the household secondary attack risk for PCR-confirmed seasonal coronaviruses. We present transmission risk stratified by demographic features of households. Results: We estimated that the proportion of cases acquired outside the home, weighted by age and region, was 90.7% (95% C84.6- 94.5, n=173/195) and within the home was 9.3% (5.5-15.4, 22/195). Following a symptomatic coronavirus index case, 14.9% (9.8 - 22.1, 20/134) of households experienced symptomatic transmission to at least one other household member. Onward transmission risk ranged from 11.90% (4.84-26.36, 5/42) to 19.44% (9.21-36.49, 7/36) by strain. The overall household secondary attack risk for symptomatic cases was 8.00% (5.31-11.88, 22/275), ranging across strains from 5.10 (2.11-11.84, 5/98) to 10.14 (4.82- 20.11, 7/69). Median clinical onset serial interval was 7 days (IQR= 6-9.5). Households including older adults, 3+ children, current smokers, contacts with chronic health conditions, and those in relatively deprived areas had the highest transmission risks. Child index cases and male index cases demonstrated the highest transmission risks. Conclusion: Most seasonal coronaviruses appear to be acquired outside the household, with relatively modest risk of onward transmission within households. Transmission risk following an index case appears to vary by demographic household features, with potential overlabetween those demonstrating the highest point estimates for seasonal coronavirus transmission risk and COVID-19 susceptibility and poor illness outcomes.

13.
Lancet Respir Med ; 8(12): 1181-1191, 2020 12.
Article in English | MEDLINE | ID: covidwho-786438

ABSTRACT

BACKGROUND: People experiencing homelessness are vulnerable to COVID-19 due to the risk of transmission in shared accommodation and the high prevalence of comorbidities. In England, as in some other countries, preventive policies have been implemented to protect this population. We aimed to estimate the avoided deaths and health-care use among people experiencing homelessness during the so-called first wave of COVID-19 in England-ie, the peak of infections occurring between February and May, 2020-and the potential impact of COVID-19 on this population in the future. METHODS: We used a discrete-time Markov chain model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that included compartments for susceptible, exposed, infectious, and removed individuals, to explore the impact of the pandemic on 46 565 individuals experiencing homelessness: 35 817 living in 1065 hostels for homeless people, 3616 sleeping in 143 night shelters, and 7132 sleeping outside. We ran the model under scenarios varying the incidence of infection in the general population and the availability of prevention measures: specialist hotel accommodation, infection control in homeless settings, and mixing with the general population. We divided our scenarios into first wave scenarios (covering Feb 1-May 31, 2020) and future scenarios (covering June 1, 2020-Jan 31, 2021). For each scenario, we ran the model 200 times and reported the median and 95% prediction interval (2·5% and 97·5% quantiles) of the total number of cases, the number of deaths, the number hospital admissions, and the number of intensive care unit (ICU) admissions. FINDINGS: Up to May 31, 2020, we calibrated the model to 4% of the homeless population acquiring SARS-CoV-2, and estimated that 24 deaths (95% prediction interval 16-34) occurred. In this first wave of SARS-CoV-2 infections in England, we estimated that the preventive measures imposed might have avoided 21 092 infections (19 777-22 147), 266 deaths (226-301), 1164 hospital admissions (1079-1254), and 338 ICU admissions (305-374) among the homeless population. If preventive measures are continued, we projected a small number of additional cases between June 1, 2020, and Jan 31, 2021, with 1754 infections (1543-1960), 31 deaths (21-45), 122 hospital admissions (100-148), and 35 ICU admissions (23-47) with a second wave in the general population. However, if preventive measures are lifted, outbreaks in homeless settings might lead to larger numbers of infections and deaths, even with low incidence in the general population. In a scenario with no second wave and relaxed measures in homeless settings in England, we projected 12 151 infections (10 718-13 349), 184 deaths (151-217), 733 hospital admissions (635-822), and 213 ICU admissions (178-251) between June 1, 2020, and Jan 31, 2021. INTERPRETATION: Outbreaks of SARS-CoV-2 in homeless settings can lead to a high attack rate among people experiencing homelessness, even if incidence remains low in the general population. Avoidance of deaths depends on prevention of transmission within settings such as hostels and night shelters. FUNDING: National Institute for Health Research, Wellcome, and Medical Research Council.


Subject(s)
COVID-19/mortality , Homeless Persons/statistics & numerical data , Adult , COVID-19/transmission , England/epidemiology , Female , Hospitalization/statistics & numerical data , Humans , Incidence , Male , Markov Chains , Middle Aged , Pandemics , SARS-CoV-2
15.
Lancet Digit Health ; 2(11): e607-e621, 2020 11.
Article in English | MEDLINE | ID: covidwho-720783

ABSTRACT

Evidence for the use of automated or partly automated contact-tracing tools to contain severe acute respiratory syndrome coronavirus 2 is scarce. We did a systematic review of automated or partly automated contact tracing. We searched PubMed, EMBASE, OVID Global Health, EBSCO Medical COVID Information Portal, Cochrane Library, medRxiv, bioRxiv, arXiv, and Google Advanced for articles relevant to COVID-19, severe acute respiratory syndrome, Middle East respiratory syndrome, influenza, or Ebola virus, published from Jan 1, 2000, to April 14, 2020. We also included studies identified through professional networks up to April 30, 2020. We reviewed all full-text manuscripts. Primary outcomes were the number or proportion of contacts (or subsequent cases) identified. Secondary outcomes were indicators of outbreak control, uptake, resource use, cost-effectiveness, and lessons learnt. This study is registered with PROSPERO (CRD42020179822). Of the 4036 studies identified, 110 full-text studies were reviewed and 15 studies were included in the final analysis and quality assessment. No empirical evidence of the effectiveness of automated contact tracing (regarding contacts identified or transmission reduction) was identified. Four of seven included modelling studies that suggested that controlling COVID-19 requires a high population uptake of automated contact-tracing apps (estimates from 56% to 95%), typically alongside other control measures. Studies of partly automated contact tracing generally reported more complete contact identification and follow-up compared with manual systems. Automated contact tracing could potentially reduce transmission with sufficient population uptake. However, concerns regarding privacy and equity should be considered. Well designed prospective studies are needed given gaps in evidence of effectiveness, and to investigate the integration and relative effects of manual and automated systems. Large-scale manual contact tracing is therefore still key in most contexts.


Subject(s)
Automation/methods , COVID-19/prevention & control , Contact Tracing/methods , COVID-19/epidemiology , COVID-19/transmission , Humans
SELECTION OF CITATIONS
SEARCH DETAIL