Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Transplantation ; 2022 Sep 19.
Article in English | MEDLINE | ID: covidwho-2037606

ABSTRACT

BACKGROUND: Postacute sequelae of SARS-CoV-2 infection (PASC) is an increasingly recognized phenomenon and manifested by long-lasting cognitive, mental, and physical symptoms beyond the acute infection period. We aimed to estimate the frequency of PASC symptoms in solid organ transplant (SOT) recipients and compared their frequency between those with SARS-CoV-2 infection requiring hospitalization and those who did not require hospitalization. METHODS: A survey consisting of 7 standardized questionnaires was administered to 111 SOT recipients with history of SARS-CoV-2 infection diagnosed >4 wk before survey administration. RESULTS: Median (interquartile range) time from SARS-CoV-2 diagnosis was 167 d (138-221). Hospitalization for SARS-CoV-2 infection was reported in 33 (30%) participants. Symptoms after the COVID episode were perceived as following: significant trauma (53%), cognitive decline (50%), fatigue (41%), depression (36%), breathing problems (35%), anxiety (23%), dysgeusia (22%), dysosmia (21%), and pain (19%). Hospitalized patients had poorer median scores in cognition (Quick Dementia Rating System survey score: 2.0 versus 0.5, P = 0.02), quality of life (Health-related Quality of Life survey: 2.0 versus 1.0, P = 0.015), physical health (Global physical health scale: 10.0 versus 11.0, P = 0.005), respiratory status (Breathlessness, Cough and Sputum Scale: 1.0 versus 0.0, P = 0.035), and pain (Pain score: 3 versus 0 out of 10, P = 0.003). Among patients with infection >6 mo prior, some symptoms were still present as following: abnormal breathing (42%), cough (40%), dysosmia (29%), and dysgeusia (34%). CONCLUSIONS: SOT recipients reported a high frequency of PASC symptoms. Multidisciplinary approach is needed to care for these patients beyond the acute phase.

4.
Clin Infect Dis ; 2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-1992159

ABSTRACT

Antibody responses to SARS-CoV-2 vaccination are reduced in solid organ transplant recipients (SOTRs). We report that increased levels of pre-existing antibodies to seasonal coronaviruses are associated with decreased antibody response to SARS-CoV-2 vaccination in SOTRs, supporting that antigenic imprinting modulates vaccine responses in this immunosuppressed population.

6.
Am J Transplant ; 2022 Jul 23.
Article in English | MEDLINE | ID: covidwho-1973539

ABSTRACT

A recent study concluded that SARS-CoV-2 mRNA vaccine responses were improved among transplant patients taking mTOR inhibitors (mTORi). This could have profound implications for vaccine strategies in transplant patients; however, limitations in the study design raise concerns about the conclusions. To address this issue more robustly, in a large cohort with appropriate adjustment for confounders, we conducted various regression- and machine learning-based analyses to compare antibody responses by immunosuppressive agents in a national cohort (n = 1037). MMF was associated with significantly lower odds of positive antibody response (aOR = 0.09 0.130.18 ). Consistent with the recent mTORi study, the odds tended to be higher with mTORi (aOR = 1.00 1.452.13 ); however, importantly, this seemingly protective tendency disappeared (aOR = 0.47 0.731.12 ) after adjusting for MMF. We repeated this comparison by combinations of immunosuppression agents. Compared to MMF + tacrolimus, MMF-free regimens were associated with higher odds of positive antibody response (aOR = 2.39 4.267.92 for mTORi+tacrolimus; 2.34 5.5415.32 for mTORi-only; and 6.78 10.2515.93 for tacrolimus-only), whereas MMF-including regimens were not, regardless of mTORi use (aOR = 0.81 1.542.98 for MMF + mTORi; and 0.81 1.512.87 for MMF-only). We repeated these analyses in an independent cohort (n = 512) and found similar results. Our study demonstrates that the recently reported findings were confounded by MMF, and that mTORi is not independently associated with improved vaccine responses.

7.
Transplantation ; 106(10): e452-e460, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-1948635

ABSTRACT

BACKGROUND: Solid organ transplant recipients (SOTRs) are less likely to mount an antibody response to SARS-CoV-2 mRNA vaccines. Understanding risk factors for impaired vaccine response can guide strategies for antibody testing and additional vaccine dose recommendations. METHODS: Using a nationwide observational cohort of 1031 SOTRs, we created a machine learning model to explore, identify, rank, and quantify the association of 19 clinical factors with antibody responses to 2 doses of SARS-CoV-2 mRNA vaccines. External validation of the model was performed using a cohort of 512 SOTRs at Houston Methodist Hospital. RESULTS: Mycophenolate mofetil use, a shorter time since transplant, and older age were the strongest predictors of a negative antibody response, collectively contributing to 76% of the model's prediction performance. Other clinical factors, including transplanted organ, vaccine type (mRNA-1273 versus BNT162b2), sex, race, and other immunosuppressants, showed comparatively weaker associations with an antibody response. This model showed moderate prediction performance, with an area under the receiver operating characteristic curve of 0.79 in our cohort and 0.67 in the external validation cohort. An online calculator based on our prediction model is available at http://transplantmodels.com/covidvaccine/ . CONCLUSIONS: Our machine learning model helps understand which transplant patients need closer follow-up and additional doses of vaccine to achieve protective immunity. The online calculator based on this model can be incorporated into transplant providers' practice to facilitate patient-centric, precision risk stratification and inform vaccination strategies among SOTRs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Transplant Recipients , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunosuppressive Agents/adverse effects , Machine Learning , Mycophenolic Acid , SARS-CoV-2 , Vaccines , Vaccines, Synthetic , mRNA Vaccines
8.
17.
Am J Transplant ; 22(9): 2254-2260, 2022 09.
Article in English | MEDLINE | ID: covidwho-1831928

ABSTRACT

Heterologous vaccination ("mixing platforms") for the third (D3) dose of SARS-CoV-2 vaccine is a potential strategy to improve antibody responses in solid organ transplant recipients (SOTRs), but data are mixed regarding potential differential immunogenicity. We assessed for differences in immunogenicity and tolerability of homologous (BNT162b2 or mRNA-1273; D3-mRNA) versus heterologous (Ad.26.COV2.S; D3-JJ) D3 among 377 SARS-CoV-2-infection naïve SOTRs who remained seronegative after two mRNA vaccines. We measured anti-spike titers and used weighted Poisson regression to evaluate seroconversion and development of high-titers, comparing D3-JJ to D3-mRNA, at 1-, 3-, and 6 month post-D3. 1-month post-D3, seroconversion (63% vs. 52%, p = .3) and development of high-titers (29% vs. 25%, p = .7) were comparable between D3-JJ and D3-mRNA recipients. 3 month post-D3, D3-JJ recipients were 1.4-fold more likely to seroconvert (80% vs. 57%, weighted incidence-rate-ratio: wIRR = 1.10 1.401.77 , p = .006) but not more likely to develop high-titers (27% vs. 22%, wIRR = 0.44 0.921.93 , p = .8). 6 month post-D3, D3-JJ recipients were 1.41-fold more likely to seroconvert (88% vs. 59%, wIRR = 1.04 1.411.93 , p = .029) and 2.63-fold more likely to develop high-titers (59% vs. 21%, wIRR = 1.38 2.635.00 , p = .003). There was no differential signal in alloimmune events or reactogenicity between platforms. SOTRs without antibody response after two mRNA vaccines may derive benefit from heterologous Ad.26.COV2.S D3.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 , Influenza Vaccines , Organ Transplantation , 2019-nCoV Vaccine mRNA-1273/adverse effects , Antibodies, Viral , BNT162 Vaccine/adverse effects , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Organ Transplantation/adverse effects , RNA, Messenger/genetics , SARS-CoV-2 , Transplant Recipients , Vaccination
20.
Transplantation ; 106(7): 1440-1444, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1788574

ABSTRACT

BACKGROUND: Humoral responses to coronavirus disease 2019 (COVID-19) vaccines are attenuated in solid organ transplant recipients (SOTRs), necessitating additional booster vaccinations. The Omicron variant demonstrates substantial immune evasion, and it is unknown whether additional vaccine doses increase neutralizing capacity versus this variant of concern (VOC) among SOTRs. METHODS: Within an observational cohort, 25 SOTRs with low seroresponse underwent anti-severe acute respiratory syndrome coronavirus 2 spike and receptor-binding domain immunoglobulin (Ig)G testing using a commercially available multiplex ELISA before and after a fourth COVID-19 vaccine dose (D4). Surrogate neutralization (percent angiotensin-converting enzyme 2 inhibition [%ACE2i], range 0%-100% with >20% correlating with live virus neutralization) was measured against full-length spike proteins of the vaccine strain and 5 VOCs including Delta and Omicron. Changes in IgG level and %ACE2i were compared using the paired Wilcoxon signed-rank test. RESULTS: Anti-receptor-binding domain and anti-spike seropositivity increased post-D4 from 56% to 84% and 68% to 88%, respectively. Median (interquartile range) anti-spike antibody significantly increased post-D4 from 42.3 (4.9-134.2) to 228.9 (1115.4-655.8) World Health Organization binding antibody units. %ACE2i (median [interquartile range]) also significantly increased against the vaccine strain (5.8% [0%-16.8%] to 20.6% [5.8%-45.9%]) and the Delta variant (9.1% [4.9%-12.8%] to 17.1% [10.3%-31.7%]), yet neutralization versus Omicron was poor, did not increase post-D4 (4.1% [0%-6.9%] to 0.5% [0%-5.7%]), and was significantly lower than boosted healthy controls. CONCLUSIONS: Although a fourth vaccine dose increases anti-spike IgG and neutralizing capacity against many VOCs, some SOTRs may remain at high risk for Omicron infection despite boosting. Thus, additional protective interventions or alternative vaccination strategies should be urgently explored.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Transplant Recipients , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunoglobulin G/blood , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL