Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21249440

ABSTRACT

BACKGROUNDIt is unclear how, when and where health care workers (HCW) working in hospitals are infected with SARS-CoV-2. METHODSProspective cohort study comprising 4-weekly measurement of SARS-CoV-2 specific antibodies and questionnaires from March to June 2020. We compared SARS-CoV-2 incidence between HCW working in Covid-19 patient care, HCW working in non-Covid-19 patient care and HCW not in patient care. Phylogenetic analyses of SARS-CoV-2 samples from patients and HCW were performed to identify potential transmission clusters. RESULTSWe included 801 HCW: 439 in the Covid-19 patient care group, 164 in the non-Covid-19 patient care group and 198 in the no patient care group. SARS-CoV-2 incidence was highest in HCW working in Covid-19 patient care (13.2%), as compared with HCW in non-Covid-19 patient care (6.7%, hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.2 to 4.3) and in HCW not working in patient care (3.6%, HR 3.9, 95% CI 1.8 to 8.6). Within the group of HCW caring for Covid-19 patients, SARS-CoV-2 cumulative incidence was highest in HCW working on Covid-19 wards (25.7%), as compared with HCW working on intensive care units (7.1%, HR 3.6, 95% CI 1.9 to 6.9), and HCW working in the emergency room (8.0%, HR 3.3, 95% CI 1.5 to 7.1). Phylogenetic analyses on Covid-19 wards identified multiple potential HCW-to-HCW transmission clusters while no patient-to-HCW transmission clusters were identified. CONCLUSIONSHCW working on Covid-19 wards are at increased risk for nosocomial SARS-CoV-2 infection, with an important role for HCW-to-HCW transmission. (Funded by the Netherlands Organization for Health Research and Development ZonMw & the Corona Research Fund Amsterdam UMC; Netherlands Trial Register number NL8645)

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-360586

ABSTRACT

Our understanding of the coronavirus disease-19 (COVID-19) immune response is almost exclusively derived from studies that examined blood. To gain insight in the pulmonary immune response we analysed BALF samples and paired blood samples from 17 severe COVID-19 patients. Macrophages and T cells were the most abundant cells in BALF. In the lungs, both CD4 and CD8 T cells were predominantly effector memory cells and expressed higher levels of the exhaustion marker PD-1 than in peripheral blood. Prolonged ICU stay associated with a reduced proportion of activated T cells in peripheral blood and even more so in BALF. T cell activation in blood, but not in BALF, was higher in fatal COVID-19 cases. Increased levels of inflammatory mediators were more pronounced in BALF than in plasma. In conclusion, the bronchoalveolar immune response in COVID-19 has a unique local profile that strongly differs from the immune profile in peripheral blood. SummaryThe bronchoalveolar immune response in severe COVID-19 strongly differs from the peripheral blood immune profile. Fatal COVID-19 associated with T cell activation blood, but not in BALF.

SELECTION OF CITATIONS
SEARCH DETAIL