Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Year range
1.
Preprint in English | EuropePMC | ID: ppcovidwho-295697

ABSTRACT

Background: Immune suppression is a clinical feature of chronic lymphocytic leukaemia (CLL) and patients show increased vulnerability to SARS-CoV-2 infection and suboptimal antibody responses.<br><br>Method: We studied antibody responses in 500 patients following dual COVID-19 vaccination to assess the magnitude, correlates of response, stability and functional activity of the spike-specific antibody response with 2 different vaccine platforms.<br><br>Results: Spike-specific seroconversion post-vaccine was seen in 67% of patients compared to 100% of age-matched controls. Amongst responders, titres were 3.7 times lower than the control group. Antibody responses showed a 33% fall over the next 4 months. The use of an mRNA (n=204) or adenovirus-based (n=296) vaccine platform did not impact on antibody response. Male gender, BTKi therapy, prophylactic antibiotics use and low serum IgA/IgM were predictive of failure to respond. Antibody responses after CD20-targeted immunotherapy recovered 12 months-post treatment. Post-vaccine sera from CLL patients with Spike-specific antibody response showed markedly reduced neutralisation of the SARS-CoV-2 delta variant compared to healthy controls. Patients with previous natural SARS-CoV-2 infection showed equivalent antibody levels and function as healthy donors after vaccination.<br><br>Interpretation: These findings demonstrate impaired antibody responses following dual COVID-19 vaccination in patients with CLL and further define patient risk groups. Furthermore, humoral protection against the globally-dominant delta variant is markedly impaired in CLL patients and indicates the need for further optimisation of immune protection in this patient cohort.<br><br>Funding Information: This work was partially supported by the UK Coronavirus Immunology Consortium (UK-CIC) funded by DHSC/UKRI and the National Core Studies Immunity programme.<br><br>Declaration of Interests: The authors declare no conflicts of interest.<br><br>Ethics Approval Statement: Informed consent was obtained by remote consultation and work performed under the CIA UPH IRAS approval (REC 20W\0240) from North-West and Preston ethics committee and conducted according to the Declaration of Helsinki.<br>

2.
Lancet Healthy Longev ; 2(9): e554-e560, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1433992

ABSTRACT

Background: In several countries, extended interval COVID-19 vaccination regimens are now used to accelerate population coverage, but the relative immunogenicity of different vaccines in older people remains uncertain. In this study we aimed to assess the antibody and cellular responses of older people after a single dose of either the BNT162b2 vaccine (tozinameran; Pfizer-BioNTech) or ChAdOx1 nCoV-19 vaccine (Oxford University-AstraZeneca). Methods: Participants aged 80 years or older, who did not live in a residential or care home or require assisted living, and had received a single dose of either the BNT162b2 vaccine or ChAdOx1 nCoV-19 vaccine were eligible to participate. Participants were recruited through local primary care networks in the West Midlands, UK. Blood samples and dried blood spots were taken 5-6 weeks after vaccination to assess adaptive immune responses using Elecsys electrochemiluminescence immunoassay and cellular responses by ELISpot. Primary endpoints were percentage response and quantification of adaptive immunity. Findings: Between Dec 29, 2020, and Feb 28, 2021, 165 participants were recruited and included in the analysis. 76 participants had received BNT162b2 (median age 84 years, IQR 82-89; range 80-98) and 89 had received ChAdOx1 nCoV-19 (median age 84 years, 81-87; 80-99). Antibody responses against the spike protein were detectable in 69 (93%) of 74 BNT162b2 vaccine recipients and 77 (87%) of 89 ChAdOx1 nCoV-19 vaccine recipients. Median antibody titres were of 19·3 U/mL (7·4-79·4) in the BNT162b2 vaccine recipients and 19·6 U/mL (6·1-60·0) in the ChAdOx1 nCoV-19 vaccine recipients (p=0·41). Spike protein-specific T-cell responses were observed in nine (12%) of 73 BNT162b2 vaccine recipients and 27 (31%) of 88 ChAdOx1 nCoV-19 vaccine recipients, and median responses were three-times higher in ChAdOx1 nCoV-19 vaccine recipients (24 spots per 1 × 106 peripheral blood mononuclear cells) than BNT162b2 vaccine recipients (eight spots per 1 × 106 peripheral blood mononuclear cells; p<0·0001). Humoral and cellular immune responses against spike protein were correlated in both cohorts. Evidence of previous SARS-CoV-2 infection was seen in eight participants (n=5 BNT162b2 recipients and n=3 ChAdOx1 nCoV-19 recipients), and was associated with 691-times and four-times increase in humoral and cellular immune responses across the whole cohort. Interpretation: Single doses of either BNT162b2 or ChAdOx1 nCoV-19 in older people induces humoral immunity in most participants, and is markedly enhanced by previous infection. Cellular responses were weaker, but showed enhancement after the ChAdOx1 nCoV-19 vaccine at the 5-6 week timepoint. Funding: Medical Research Council, National Institute for Health Research, and National Core Studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...