Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Semin Respir Crit Care Med ; 42(6): 839-858, 2021 12.
Article in English | MEDLINE | ID: covidwho-1768958

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was first identified as a novel coronavirus in Wuhan, Hubei province, central China, in December 2019, and is responsible for the 2019-to-present pandemic. According to the most recent data released by the World Health Organization, more than 200 million people have been infected by SARS-CoV-2 so far, and more than 4 million people died worldwide. Although our knowledge on SARS-CoV-2 and COVID-19 is constantly growing, data on COVID-19 in immunocompromised patients are still limited. The aim of the present systematic review is to describe clinical picture, disease severity, proposed treatment regimen, and response to vaccination in patients with different types and severity of immunosuppression.


Subject(s)
COVID-19/immunology , COVID-19/physiopathology , Immunocompromised Host/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , COVID-19/mortality , COVID-19/therapy , COVID-19 Vaccines/immunology , Humans , Immune Tolerance
2.
Frontiers in pediatrics ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-1749433

ABSTRACT

The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection has milder presentation in children than in adults, mostly requiring only supportive therapy. The immunopathogenic course of COVID-19 can be divided in two distinct but overlapping phases: the first triggered by the virus itself and the second one by the host immune response (cytokine storm). Respiratory failure or systemic involvement as Multisystem Inflammatory Syndrome in Children (MIS-C) requiring intensive care are described only in a small portion of infected children. Less severe lung injury in children could be explained by qualitative and quantitative differences in age-related immune response. Evidence on the best therapeutic approach for COVID-19 lung disease in children is lacking. Currently, the approach is mainly conservative and based on supportive therapy. However, in hospitalized children with critical illness and worsening lung function, antiviral therapy with remdesivir and immunomodulant treatment could be considered the “therapeutic pillars.”

3.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-323340

ABSTRACT

Purpose: Despite the spread of SARS-CoV-2 global pandemic and the volume of clinical trials launched, no specific therapeutic drug approaches improving outcomes have been so far approved. In COVID-19 patients, aldosterone via ACE2 deregulation may be responsible for systemic and pulmonary vasoconstriction, inflammation and oxidative organ damage. Aim: To verify retrospectively the impact of the mineral corticoid receptor antagonist canrerone i.v. on the need of invasive ventilatory support and/or all-cause in-hospital mortality. Study design : In this retrospective study (CARDIOVID-19, ID-107162), COVID-19 patients hospitalized for severe respiratory failure were taken care by pneumologists or cardiologists and received two different therapeutic approaches according to personal skill of referral medical team on pharmacological management. Group 1 (n=39) were given vasodilator agents or RAAS-inhibitors and group 2 (n=30) were given canrenone i.v. Results: Among 69 consecutive COVID-19 patients, enrolled in COVID-19 NETWORK registry, the group given canrenone (200 mg/q.d. for a median of 14±11) showed a free event rate of 83% with a survival percentage of 90%. In group 1, not receiving canrenone, free event rate was 51% and survival 64%. Kaplan-Meier analysis for composite outcomes showed a Log Rank of 0.0004 and for mortality, Log Rank was 0.005. Conclusions: The novelty of our observation relies on the independent positive impact of the canrenone, a mineral corticoid receptor antagonist, on all-cause mortality and clinical improvement in COVID-19 patients.

4.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-323334

ABSTRACT

Objective: To describe the radiographic key patterns on CXR in patients with SARS-CoV-2 infection, assessing the prevalence of radiographic signs of interstitial pneumonia. To evaluate pattern variation between a baseline and a follow-up CXR. Materials: and methods. 1117 patients tested positive for SARS-CoV-2 infection were retrospectively enrolled from four centers in Lombardy region. All patients underwent a CXR at presentation. Follow-up CXR was performed when clinically indicated.Two radiologists in each center reviewed CXR images and classified them as suggestive or not for interstitial pneumonia, recording the presence of ground-glass opacity (GGO), reticular pattern or consolidation and their distribution.Pearson’s chi-square test for categorical variables and McNemar test (chi-square for paired data) were performed. Results: . Patients mean age 63.3 years, 767 were males (65.5%). The main result is the large proportion of positive CXR in COVID-19 patients.Baseline CXR was positive in 940 patients (80.3%), with significant differences in age and sex distribution between patients with positive and negative CXR. 382 patients underwent a follow-up CXR. The most frequent pattern on baseline CXR was the GGO (66.1%), on follow-up was consolidation (53.4%). The most common distributions were peripheral and middle-lower lung zone. Conclusions: . We described key-patterns and their distribution on CXR in a large cohort of COVID-19 patients: GGO was the most frequent finding on baseline CXR, while we found an increase in the proportion of lung consolidation on follow-up CXR. CXR proved to be a reliable tool in our cohort obtaining positive results in 80.3% of the baseline cases.

5.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-312915

ABSTRACT

BACKGROUND. Aim of the study is to evaluate the incidence of DVT in COVID-19 patients and its correlation with the severity of the disease and with clinical and laboratory findings. METHODS. 234 symptomatic patients with COVID-19, diagnosed according to the World Health Organization guidelines, were included in the study. The severity of the disease was classified as moderate, severe and critical. Doppler ultrasound (DUS) was performed in all patients. DUS findings, clinical, laboratory’s and therapeutic variables were investigated by contingency tables, Pearson chi square test and by Student T test and Fisher's exact test. ROC curve analysis was applied to study significant continuous variables. RESULTS. Overall incidence of DVT was 10.7% (25/234): 1.6% (1/60) among moderate cases, 13.8% (24/174) in severely and critically ill patients. Prolonged bedrest and intensive care unit admission were significantly associated with the presence of DVT (19.7%). Fraction of inspired oxygen, P/F ratio, respiratory rate, heparin administration, D-dimer, IL-6, ferritin and CRP showed correlation with DVT. CONCLUSIONS. DUS may be considered a useful and valid tool for early identification of DVT. In less severely affected patients, DUS as screening of DVT might be unnecessary. High rate of DVT found in severe patients and its correlation with respiratory parameters and some significant laboratory findings suggests that these can be used as a screening tool for patients who should be getting DUS.

6.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-310954

ABSTRACT

The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection has milder presentation in children than adults, mostly requiring only supportive therapy. The immunopathogenic course of COVID-19 can be divided in two distinct but overlapping phases: the first triggered by the virus itself and the second one by the host immune response. Cytokine storm induces Acute Respiratory Distress Syndrome (ARDS) in 20-30% of adults while less than 1% of children develops severe pulmonary or systemic involvement as Multisystem Inflammatory Syndrome in Children (MIS-C), requiring intensive care. Less severe lung injury in children could be explained by qualitative and quantitative differences in age-related immune response. Evidence on the best therapeutic approach for COVID-19 lung disease in children is lacking. Currently, the approach is mainly conservative and based on supportive therapy. However, in hospitalized children with critical illness and worsening lung function, antiviral therapy with remdesivir and immunomodulant treatment with systemic steroids could be considered the “therapeutic pillars”. In addition, optimal disease control of allergic and asthmatic children and, in the near future, vaccinations are expected to be important as preventive strategies to reduce the COVID-19 burden.

7.
Frontiers in immunology ; 12, 2021.
Article in English | EuropePMC | ID: covidwho-1661353

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by beta-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has rapidly spread across the globe starting from February 2020. It is well established that during viral infection, extracellular vesicles become delivery/presenting vectors of viral material. However, studies regarding extracellular vesicle function in COVID-19 pathology are still scanty. Here, we performed a comparative study on exosomes recovered from the plasma of either MILD or SEVERE COVID-19 patients. We show that although both types of vesicles efficiently display SARS-CoV-2 spike-derived peptides and carry immunomodulatory molecules, only those of MILD patients are capable of efficiently regulating antigen-specific CD4+ T-cell responses. Accordingly, by mass spectrometry, we show that the proteome of exosomes of MILD patients correlates with a proper functioning of the immune system, while that of SEVERE patients is associated with increased and chronic inflammation. Overall, we show that exosomes recovered from the plasma of COVID-19 patients possess SARS-CoV-2-derived protein material, have an active role in enhancing the immune response, and possess a cargo that reflects the pathological state of patients in the acute phase of the disease.

8.
Can Respir J ; 2022: 1499690, 2022.
Article in English | MEDLINE | ID: covidwho-1650370

ABSTRACT

Background: Continuous positive airway pressure (CPAP) can be beneficial in acute respiratory failure (ARF) due to coronavirus (COVID-19) pneumonia, but delaying endotracheal intubation (ETI) in nonresponders may increase mortality. We aimed at investigating the performance of composite respiratory indexes as possible predictors of CPAP failure in ARF due to COVID-19. Methods: This was a multicenter, prospective, observational, and cohort study conducted in the respiratory units of three University hospitals in Milan and in a secondary care hospital in Codogno (Italy), on consecutive adult patients with ARF due to COVID-19 pneumonia that underwent CPAP between March 2020 and March 2021. ETI transfer to the intensive care unit or death is defined CPAP failure. Predictors of CPAP failure were assessed before T0 and 1 hour after T1 CPAP initiation and included mROX index (ratio of PaO2/FiO2 to respiratory rate), alveolar-to-arterial (A-a) O2 gradient, and the HACOR (heart rate, acidosis, consciousness, oxygenation, and respiratory rate) score. Results: Three hundred and fifty four patients (mean age 64 years, 73% males) were included in the study; 136 (38.4%) satisfied criteria for CPAP failure. A-a O2 gradient, mROX, and HACOR scores were worse in patients who failed CPAP, both at T0 and T1 (p < 0.001 for all parameters). The HACOR score was associated with CPAP failure (odds ratio-OR-for every unit increase in HACOR = 1.361; 95%CI: 1.103-1.680; p=0.004; AUROC = 0.742; p < 0.001). CPAP failure was best predicted by a threshold of 4.50 (sensitivity = 53% and specificity = 87%). Conclusions: The HACOR score may be a reliable and early predictor of CPAP failure in patients treated for ARF in COVID-19 pneumonia.


Subject(s)
COVID-19 , Pneumonia , Respiratory Insufficiency , Adult , Cohort Studies , Continuous Positive Airway Pressure , Female , Humans , Male , Middle Aged , Pneumonia/complications , Pneumonia/epidemiology , Prospective Studies , Respiratory Insufficiency/therapy , SARS-CoV-2
9.
10.
J Clin Med ; 10(24)2021 Dec 18.
Article in English | MEDLINE | ID: covidwho-1580661

ABSTRACT

A number of studies have highlighted important alterations of the lipid profile in COVID-19 patients. Besides the well-known atheroprotective function, HDL displays anti-inflammatory, anti-oxidative, and anti-infectious properties. The aim of this retrospective study was to assess the HDL anti-inflammatory and antioxidant features, by evaluation of HDL-associated Serum amyloid A (SAA) enrichment and HDL-paraoxonase 1 (PON-1) activity, in a cohort of COVID-19 patients hospitalized at the Cardiorespiratory COVID-19 Unit of Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico of Milan. COVID-19 patients reached very low levels of HDL-c (mean ± SD: 27.1 ± 9.7 mg/dL) with a marked rise in TG (mean ± SD: 165.9 ± 62.5 mg/dL). Compared to matched-controls, SAA levels were significantly raised in COVID-19 patients at admission. There were no significant differences in the SAA amount between 83 alive and 22 dead patients for all-cause in-hospital mortality. Similar findings were reached in the case of PON-1 activity, with no differences between alive and dead patients for all-cause in-hospital mortality. In conclusion, although not related to the prediction of in-hospital mortality, reduction in HDL-c and the enrichment of SAA in HDL are a mirror of SARS-CoV-2 positivity even at the very early stages of the infection.

12.
13.
Microbiol Spectr ; 9(2): e0054921, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1381170

ABSTRACT

In one year of the coronavirus disease 2019 (COVID-19) pandemic, many studies have described the different metabolic changes occurring in COVID-19 patients, linking these alterations to the disease severity. However, a complete metabolic signature of the most severe cases, especially those with a fatal outcome, is still missing. Our study retrospectively analyzes the metabolome profiles of 75 COVID-19 patients with moderate and severe symptoms admitted to Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Lombardy Region, Italy) following SARS-CoV-2 infection between March and April 2020. Italy was the first Western country to experience COVID-19, and the Lombardy Region was the epicenter of the Italian COVID-19 pandemic. This cohort shows a higher mortality rate compared to others; therefore, it represents a unique opportunity to investigate the underlying metabolic profiles of the first COVID-19 patients in Italy and to identify the potential biomarkers related to the disease prognosis and fatal outcome. IMPORTANCE Understanding the metabolic alterations occurring during an infection is a key element for identifying potential indicators of the disease prognosis, which are fundamental for developing efficient diagnostic tools and offering the best therapeutic treatment to the patient. Here, exploiting high-throughput metabolomics data, we identified the first metabolic profile associated with a fatal outcome, not correlated with preexisting clinical conditions or the oxygen demand at the moment of diagnosis. Overall, our results contribute to a better understanding of COVID-19-related metabolic disruption and may represent a useful starting point for the identification of independent prognostic factors to be employed in therapeutic practice.


Subject(s)
Blood Chemical Analysis , COVID-19/epidemiology , COVID-19/mortality , Energy Metabolism/physiology , Metabolome/physiology , Aged , Aged, 80 and over , Biomarkers/blood , Comorbidity , Female , Humans , Italy/epidemiology , Male , Middle Aged , Prognosis , Retrospective Studies , SARS-CoV-2
14.
Sci Immunol ; 6(62)2021 08 10.
Article in English | MEDLINE | ID: covidwho-1352519

ABSTRACT

To understand how a protective immune response against SARS-CoV-2 develops over time, we integrated phenotypic, transcriptional and repertoire analyses on PBMCs from mild and severe COVID-19 patients during and after infection, and compared them to healthy donors (HD). A type I IFN-response signature marked all the immune populations from severe patients during the infection. Humoral immunity was dominated by IgG production primarily against the RBD and N proteins, with neutralizing antibody titers increasing post infection and with disease severity. Memory B cells, including an atypical FCRL5+ T-BET+ memory subset, increased during the infection, especially in patients with mild disease. A significant reduction of effector memory, CD8+ T cells frequency characterized patients with severe disease. Despite such impairment, we observed robust clonal expansion of CD8+ T lymphocytes, while CD4+ T cells were less expanded and skewed toward TCM and TH2-like phenotypes. MAIT cells were also expanded, but only in patients with mild disease. Terminally differentiated CD8+ GZMB+ effector cells were clonally expanded both during the infection and post-infection, while CD8+ GZMK+ lymphocytes were more expanded post-infection and represented bona fide memory precursor effector cells. TCR repertoire analysis revealed that only highly proliferating T cell clonotypes, which included SARS-CoV-2-specific cells, were maintained post-infection and shared between the CD8+ GZMB+ and GZMK+ subsets. Overall, this study describes the development of immunity against SARS-CoV-2 and identifies an effector CD8+ T cell population with memory precursor-like features.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Host-Pathogen Interactions/immunology , Immunophenotyping , SARS-CoV-2/immunology , Transcriptome , Adult , Aged , Antibodies, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , COVID-19/virology , Cell Plasticity/genetics , Cell Plasticity/immunology , Clonal Evolution/immunology , Female , Gene Expression Profiling , Humans , Immunoglobulin Isotypes/immunology , Immunologic Memory , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lymphocyte Count , Male , Middle Aged , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
15.
Crit Care ; 25(1): 268, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1330231

ABSTRACT

BACKGROUND: Noninvasive respiratory support (NIRS) has been diffusely employed outside the intensive care unit (ICU) to face the high request of ventilatory support due to the massive influx of patients with acute respiratory failure (ARF) caused by coronavirus-19 disease (COVID-19). We sought to summarize the evidence on clinically relevant outcomes in COVID-19 patients supported by NIV outside the ICU. METHODS: We searched PUBMED®, EMBASE®, and the Cochrane Controlled Clinical trials register, along with medRxiv and bioRxiv repositories for pre-prints, for observational studies and randomized controlled trials, from inception to the end of February 2021. Two authors independently selected the investigations according to the following criteria: (1) observational study or randomized clinical trials enrolling ≥ 50 hospitalized patients undergoing NIRS outside the ICU, (2) laboratory-confirmed COVID-19, and (3) at least the intra-hospital mortality reported. Preferred Reporting Items for Systematic reviews and Meta-analysis guidelines were followed. Data extraction was independently performed by two authors to assess: investigation features, demographics and clinical characteristics, treatments employed, NIRS regulations, and clinical outcomes. Methodological index for nonrandomized studies tool was applied to determine the quality of the enrolled studies. The primary outcome was to assess the overall intra-hospital mortality of patients under NIRS outside the ICU. The secondary outcomes included the proportions intra-hospital mortalities of patients who underwent invasive mechanical ventilation following NIRS failure and of those with 'do-not-intubate' (DNI) orders. RESULTS: Seventeen investigations (14 peer-reviewed and 3 pre-prints) were included with a low risk of bias and a high heterogeneity, for a total of 3377 patients. The overall intra-hospital mortality of patients receiving NIRS outside the ICU was 36% [30-41%]. 26% [21-30%] of the patients failed NIRS and required intubation, with an intra-hospital mortality rising to 45% [36-54%]. 23% [15-32%] of the patients received DNI orders with an intra-hospital mortality of 72% [65-78%]. Oxygenation on admission was the main source of between-study heterogeneity. CONCLUSIONS: During COVID-19 outbreak, delivering NIRS outside the ICU revealed as a feasible strategy to cope with the massive demand of ventilatory assistance. REGISTRATION: PROSPERO, https://www.crd.york.ac.uk/prospero/ , CRD42020224788, December 11, 2020.


Subject(s)
COVID-19/therapy , Noninvasive Ventilation , Respiratory Distress Syndrome/therapy , COVID-19/mortality , Continuous Positive Airway Pressure , Hospital Mortality , Humans , Intensive Care Units , Intubation/statistics & numerical data , Observational Studies as Topic , Randomized Controlled Trials as Topic , Respiration, Artificial , Respiratory Distress Syndrome/virology
16.
Chest ; 159(6): 2507-2508, 2021 06.
Article in English | MEDLINE | ID: covidwho-1251066
17.
Eur J Clin Invest ; 51(9): e13629, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1286672

ABSTRACT

Background During COVID-19 outbreak, Italy was the first country in Europe to be heavily affected with an intensive care unit mortality of 26%. In order to reduce this percentage, physicians should establish clear and objective criteria to stratify COVID-19 patients at high risk of in-hospital death. Thus, the aim has been to test a large spectrum of variables ranging from clinical evaluation to laboratory biomarkers to identify which parameter would best predict all-cause in-hospital mortality in COVID-19 patients. Design observational study. Results Multivariate Cox regression analysis showed that each 5 years of increase in age corresponded to a hazard ratio (HR) of 1.28 (95% CI 1.00-1.65, P = .050); each increment of 803 ng/L of N-terminal pro-B-type natriuretic peptide (NT-proBNP) corresponded to a HR of 1.24 (95% CI 1.11-1.39, P < .001); each increment of 58 ng/L of interleukin (IL)-6 corresponded to a HR of 1.23 (95% CI 1.09-1.40, P < .001), and each increment of 250 U/L of lactate dehydrogenase (LDH) corresponded to a HR of 1.23 (95% CI 1.10-1.37, P < .001). According to the calculated cut-points for age (≥70 years), NT-proBNP (≥803 ng/L), IL-6 (≥58 ng/L) and LDH (≥371 U/L) when 2 out of these 4 were overcome, the HR was 2.96 (95% CI 1.97-4.45, P < .001). Conclusion In COVID-19 patients, besides age, the evaluation of three biochemical parameters, available in few hours after hospital admission can predict in-hospital mortality regardless of other comorbidities.


Subject(s)
COVID-19/mortality , Hospital Mortality , Interleukin-6/blood , L-Lactate Dehydrogenase/blood , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Age Factors , Aged , Biomarkers , COVID-19/blood , Female , Humans , Italy , Male , Middle Aged , Multivariate Analysis , Prognosis , Proportional Hazards Models , SARS-CoV-2
18.
Eur Respir J ; 57(4)2021 04.
Article in English | MEDLINE | ID: covidwho-1190024

ABSTRACT

INTRODUCTION: Hospitalised patients with coronavirus disease 2019 (COVID-19) as a result of SARS-CoV-2 infection have a high mortality rate and frequently require noninvasive respiratory support or invasive ventilation. Optimising and standardising management through evidence-based guidelines may improve quality of care and therefore patient outcomes. METHODS: A task force from the European Respiratory Society and endorsed by the Chinese Thoracic Society identified priority interventions (pharmacological and non-pharmacological) for the initial version of this "living guideline" using the PICO (population, intervention, comparator, outcome) format. The GRADE approach was used for assessing the quality of evidence and strength of recommendations. Systematic literature reviews were performed, and data pooled by meta-analysis where possible. Evidence tables were presented and evidence to decision frameworks were used to formulate recommendations. RESULTS: Based on the available evidence at the time of guideline development (20 February, 2021), the panel makes a strong recommendation in favour of the use of systemic corticosteroids in patients requiring supplementary oxygen or ventilatory support, and for the use of anticoagulation in hospitalised patients. The panel makes a conditional recommendation for interleukin (IL)-6 receptor antagonist monoclonal antibody treatment and high-flow nasal oxygen or continuous positive airway pressure in patients with hypoxaemic respiratory failure. The panel make strong recommendations against the use of hydroxychloroquine and lopinavir-ritonavir. Conditional recommendations are made against the use of azithromycin, hydroxychloroquine combined with azithromycin, colchicine, and remdesivir, in the latter case specifically in patients requiring invasive mechanical ventilation. No recommendation was made for remdesivir in patients requiring supplemental oxygen. Further recommendations for research are made. CONCLUSION: The evidence base for management of COVID-19 now supports strong recommendations in favour and against specific interventions. These guidelines will be regularly updated as further evidence becomes available.


Subject(s)
COVID-19/therapy , Hospitalization , Adrenal Cortex Hormones/therapeutic use , Adult , Humans , Meta-Analysis as Topic , Respiration, Artificial , Systematic Reviews as Topic
20.
Respir Med ; 180: 106355, 2021.
Article in English | MEDLINE | ID: covidwho-1118652

ABSTRACT

Non-pharmacological interventions and tracing-testing strategy proved insufficient to reduce SARS-CoV-2 spreading worldwide. Several vaccines with different mechanisms of action are currently under development. This review describes the potential target antigens evaluated for SARS-CoV-2 vaccine in the context of both conventional and next-generation platforms. We reported experimental data from phase-3 trials with a focus on different definitions of efficacy as well as factors affecting real-life effectiveness of SARS-CoV-2 vaccination, including logistical issues associated to vaccine availability, delivery, and immunization strategies. On this background, new variants of SARS-CoV-2 are discussed. We also provided a critical view on vaccination in special populations at higher risk of infection or severe disease as elderly people, pregnant women and immunocompromised patients. A final paragraph addresses safety on the light of the unprecedented reduction of length of the vaccine development process and faster authorization.


Subject(s)
COVID-19 Vaccines/pharmacology , COVID-19/prevention & control , Immunity, Herd , SARS-CoV-2/immunology , Vaccination/methods , COVID-19/epidemiology , COVID-19/immunology , Humans , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL