Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Immunity ; 55(7): 1299-1315.e4, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-2076210

ABSTRACT

As the establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory in children remains largely unexplored, we recruited convalescent COVID-19 children and adults to define their circulating memory SARS-CoV-2-specific CD4+ and CD8+ T cells prior to vaccination. We analyzed epitope-specific T cells directly ex vivo using seven HLA class I and class II tetramers presenting SARS-CoV-2 epitopes, together with Spike-specific B cells. Unvaccinated children who seroconverted had comparable Spike-specific but lower ORF1a- and N-specific memory T cell responses compared with adults. This agreed with our TCR sequencing data showing reduced clonal expansion in children. A strong stem cell memory phenotype and common T cell receptor motifs were detected within tetramer-specific T cells in seroconverted children. Conversely, children who did not seroconvert had tetramer-specific T cells of predominantly naive phenotypes and diverse TCRαß repertoires. Our study demonstrates the generation of SARS-CoV-2-specific T cell memory with common TCRαß motifs in unvaccinated seroconverted children after their first virus encounter.


Subject(s)
COVID-19 , SARS-CoV-2 , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Humans , Immunologic Memory , Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell, alpha-beta/genetics , Spike Glycoprotein, Coronavirus
2.
Open Forum Infect Dis ; 9(10): ofac490, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2062949

ABSTRACT

Although numerous studies have evaluated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using cycle threshold (Ct) values as a surrogate of viral ribonucleic acid (RNA) load, few studies have used standardized, quantitative methods. We validated a quantitative SARS-CoV-2 digital polymerase chain reaction assay normalized to World Health Organization International Units and correlated viral RNA load with symptoms and disease severity.

3.
Clin Infect Dis ; 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1852985

ABSTRACT

BACKGROUND: Following SARS-CoV-2 infection or vaccination there is significant variability between individuals in protective antibody levels against SARS-CoV-2, and within individuals against different virus variants. However, host demographic or clinical characteristics that predict variability in cross-reactive antibody levels are not well-described. These data could inform clinicians, researchers, and policy makers on the populations most likely to require vaccine booster shots. METHODS: In an institutional review board-approved prospective observational cohort study of staff at St. Jude Children's Research Hospital, we identified participants with plasma samples collected after SARS-CoV-2 infection, after mRNA vaccination, and after vaccination following infection, and quantitated IgG levels by ELISA to the spike receptor binding domain (RBD) from five important SARS-CoV-2 variants (Wuhan Hu-1, B.1.1.7, B.1.351, P.1 and B.1.617.2). We used regression models to identify factors that contributed to cross-reactive IgG against one or multiple viral variants. RESULTS: Following infection, a minority of the cohort generated cross-reactive antibodies, IgG antibodies that bound all tested variants. Those that did had increased disease severity, poor metabolic health, and were of a particular ancestry. Vaccination increased the levels of cross-reactive IgG levels in all populations including immunocompromised, elderly and persons with poor metabolic health. Younger people with a healthy weight mounted the highest responses. CONCLUSIONS: Our findings provide important new information on individual antibody responses to infection/vaccination that could inform clinicians on the populations that may require follow-on immunization.

4.
Immunity ; 55(5): 749-780, 2022 05 10.
Article in English | MEDLINE | ID: covidwho-1838899

ABSTRACT

The lungs are constantly exposed to inhaled debris, allergens, pollutants, commensal or pathogenic microorganisms, and respiratory viruses. As a result, innate and adaptive immune responses in the respiratory tract are tightly regulated and are in continual flux between states of enhanced pathogen clearance, immune-modulation, and tissue repair. New single-cell-sequencing techniques are expanding our knowledge of airway cellular complexity and the nuanced connections between structural and immune cell compartments. Understanding these varied interactions is critical in treatment of human pulmonary disease and infections and in next-generation vaccine design. Here, we review the innate and adaptive immune responses in the lung and airways following infection and vaccination, with particular focus on influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ongoing SARS-CoV-2 pandemic has put pulmonary research firmly into the global spotlight, challenging previously held notions of respiratory immunity and helping identify new populations at high risk for respiratory distress.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Humans , Immunity, Innate , Immunity, Mucosal , Lung , Vaccination
5.
Front Pediatr ; 9: 752993, 2021.
Article in English | MEDLINE | ID: covidwho-1779952

ABSTRACT

Objectives: Studies of household transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) focused on households with children are limited. We investigated household secondary attack rate (SAR), transmission dynamics, and contributing factors in households with children. Materials and Methods: In this prospective case-ascertained study in Los Angeles County, California, all households members were enrolled if ≥1 member tested positive for SARS-CoV-2 by polymerase chain reaction (PCR). Nasopharyngeal PCRs, serology, and symptom data were obtained over multiple visits. Results: A total of 489 individuals in 105 households were enrolled from June to December 2020. The majority (77.3%) reported a household annual income of <$50,000, and most (92.9%) were of Hispanic/Latinx ethnicity. Children <18 years old accounted for 46.9% index cases, of whom 45.3% were asymptomatic. Household index cases were predominantly children during low community transmission and adults during the high community transmission period (χ2 = 7.647, p = 0.0036. The mean household SAR was 77.0% (95% CI: 69.4-84.6%). Child and adult index cases both efficiently transmitted SARS-CoV-2 within households [81.9%, (95% CI: 72.1-91.9%) vs. 72.4% (95% CI: 59.8-85.1%), p = 0.23]. Household income and pets were significantly associated with higher SAR in the multivariable analysis of household factors (p = 0.0013 and 0.004, respectively). Conclusions: The SAR in households with children in an urban setting with a large ethnic minority population is much higher than previously described. Children play important roles as index cases. SAR was disproportionately impacted by household income. Vaccination and public health efforts need special focus on children and vulnerable communities to help mitigate SARS-CoV-2 spread.

6.
Nat Immunol ; 23(5): 781-790, 2022 05.
Article in English | MEDLINE | ID: covidwho-1778617

ABSTRACT

Although mRNA vaccine efficacy against severe coronavirus disease 2019 remains high, variant emergence has prompted booster immunizations. However, the effects of repeated exposures to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens on memory T cells are poorly understood. Here, we utilize major histocompatibility complex multimers with single-cell RNA sequencing to profile SARS-CoV-2-responsive T cells ex vivo from humans with one, two or three antigen exposures, including vaccination, primary infection and breakthrough infection. Exposure order determined the distribution between spike-specific and non-spike-specific responses, with vaccination after infection leading to expansion of spike-specific T cells and differentiation to CCR7-CD45RA+ effectors. In contrast, individuals after breakthrough infection mount vigorous non-spike-specific responses. Analysis of over 4,000 epitope-specific T cell antigen receptor (TCR) sequences demonstrates that all exposures elicit diverse repertoires characterized by shared TCR motifs, confirmed by monoclonal TCR characterization, with no evidence for repertoire narrowing from repeated exposure. Our findings suggest that breakthrough infections diversify the T cell memory repertoire and current vaccination protocols continue to expand and differentiate spike-specific memory.


Subject(s)
COVID-19 , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Humans , Phenotype , Receptors, Antigen, T-Cell/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic , mRNA Vaccines
7.
Cell Host Microbe ; 30(1): 83-96.e4, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1634725

ABSTRACT

SARS-CoV-2 infection causes diverse outcomes ranging from asymptomatic infection to respiratory distress and death. A major unresolved question is whether prior immunity to endemic, human common cold coronaviruses (hCCCoVs) impacts susceptibility to SARS-CoV-2 infection or immunity following infection and vaccination. Therefore, we analyzed samples from the same individuals before and after SARS-CoV-2 infection or vaccination. We found hCCCoV antibody levels increase after SARS-CoV-2 exposure, demonstrating cross-reactivity. However, a case-control study indicates that baseline hCCCoV antibody levels are not associated with protection against SARS-CoV-2 infection. Rather, higher magnitudes of pre-existing betacoronavirus antibodies correlate with more SARS-CoV-2 antibodies following infection, an indicator of greater disease severity. Additionally, immunization with hCCCoV spike proteins before SARS-CoV-2 immunization impedes the generation of SARS-CoV-2-neutralizing antibodies in mice. Together, these data suggest that pre-existing hCCCoV antibodies hinder SARS-CoV-2 antibody-based immunity following infection and provide insight on how pre-existing coronavirus immunity impacts SARS-CoV-2 infection, which is critical considering emerging variants.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/immunology , Common Cold/immunology , Immunity, Humoral/immunology , SARS-CoV-2/immunology , Animals , Asymptomatic Infections , COVID-19/virology , Case-Control Studies , Cell Line , Common Cold/virology , Cross Reactions/immunology , Female , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Spike Glycoprotein, Coronavirus/immunology
8.
Cell host & microbe ; 2021.
Article in English | EuropePMC | ID: covidwho-1564429

ABSTRACT

A major unresolved question is whether prior immunity to endemic, human common cold coronaviruses (hCCCoV) impacts susceptibility to SARS-CoV-2 infection. Lin et al. analyze hCCCoV antibodies in the same individuals before and after SARS-CoV-2 infection, finding pre-existing betacoronavirus antibodies may hinder SARS-CoV-2 effective immunity following infection.

9.
Microbiol Spectr ; 9(2): e0105921, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1495012

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and has since caused a global pandemic resulting in millions of cases and deaths. Diagnostic tools and serological assays are critical for controlling the outbreak, especially assays designed to quantitate neutralizing antibody levels, considered the best correlate of protection. As vaccines become increasingly available, it is important to identify reliable methods for measuring neutralizing antibody responses that correlate with authentic virus neutralization but can be performed outside biosafety level 3 (BSL3) laboratories. While many neutralizing assays using pseudotyped virus have been developed, there have been few studies comparing the different assays to each other as surrogates for authentic virus neutralization. Here, we characterized three enzyme-linked immunosorbent assays (ELISAs) and three pseudotyped vesicular stomatitis virus (VSV) neutralization assays and assessed their concordance with authentic virus neutralization. The most accurate assays for predicting authentic virus neutralization were luciferase- and secreted embryonic alkaline phosphatase (SEAP)-expressing pseudotyped virus neutralizations, followed by green fluorescent protein (GFP)-expressing pseudotyped virus neutralization, and then the ELISAs. IMPORTANCE The ongoing COVID-19 pandemic is caused by infection with severe acute respiratory syndrome virus 2 (SARS-CoV-2). Prior infection or vaccination can be detected by the presence of antibodies in the blood. Antibodies in the blood are also considered to be protective against future infections from the same virus. The "gold standard" assay for detecting protective antibodies against SARS-CoV-2 is neutralization of authentic SARS-CoV-2 virus. However, this assay can only be performed under highly restrictive biocontainment conditions. We therefore characterized six antibody-detecting assays for their correlation with authentic virus neutralization. The significance of our research is in outlining the advantages and disadvantages of the different assays and identifying the optimal surrogate assay for authentic virus neutralization. This will allow for more accurate assessments of protective immunity against SARS-CoV-2 following infection and vaccination.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Neutralization Tests/methods , SARS-CoV-2/immunology , Adult , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Male , Middle Aged , Protein Domains/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Vesicular stomatitis Indiana virus/immunology , Vesicular stomatitis New Jersey virus/immunology
10.
Open Forum Infect Dis ; 8(9): ofab420, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1437840

ABSTRACT

The efficacy of coronavirus disease 2019 (COVID-19) vaccines administered after COVID-19-specific monoclonal antibody is unknown, and "antibody interference" might hinder immune responses leading to vaccine failure. In an institutional review board-approved prospective study, we found that an individual who received mRNA COVID-19 vaccination <40 days after COVID-19-specific monoclonal antibody therapy for symptomatic COVID-19 had similar postvaccine antibody responses to SARS-CoV-2 receptor binding domain (RBD) for 4 important SARS-CoV-2 variants (B.1, B.1.1.7, B.1.351, and P.1) as other participants who were also vaccinated following COVID-19. Vaccination against COVID-19 shortly after COVID-19-specific monoclonal antibody can boost and expand antibody protection, questioning the need to delay vaccination in this setting. TRIAL REGISTRATION: The St. Jude Tracking of Viral and Host Factors Associated with COVID-19 study; NCT04362995; https://clinicaltrials.gov/ct2/show/NCT04362995.

SELECTION OF CITATIONS
SEARCH DETAIL