Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Sao Paulo Med J ; 2022 Sep 12.
Article in English | MEDLINE | ID: covidwho-2029832

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 has several mechanisms of action related to inflammatory responses, especially in individuals diagnosed with obesity. This hyperinflammatory clinical profile resulting from the association between obesity and coronavirus disease 2019 (COVID-19) may be attenuated by regular physical activity. OBJECTIVE: The aim of this study was to review the evidence on the consequences of physical inactivity and physical activity on COVID-19 in patients with obesity. DESIGN AND SETTING: Narrative review at the Bahiana School of Medicine and Public Health in Salvador, Brazil. METHODS: We searched evidence on the association of COVID-19 with physical activity and obesity using the following keywords: "covid-19," "physical activity," and "obesity". The databases used were MEDLINE (PubMed), ScienceDirect, and Virtual Health Library. Studies published from 2019 to 2021 and available in Portuguese, English, and Spanish were included. The final search was conducted on September 26, 2021. RESULTS: We identified 661 studies in the database, among which 71 were considered for inclusion in the narrative review of the molecular aspects of COVID-19 and its relationship with physical activity and obesity. CONCLUSION: This literature review enabled the perception of the relationship between the molecular mechanisms of COVID-19 and obesity. Regular physical activity had various benefits for the inflammatory condition of the studied population, highlighting moderate-intensity.

2.
Microb Genom ; 8(9)2022 09.
Article in English | MEDLINE | ID: covidwho-2029182

ABSTRACT

During the first semester of 2021, all of Brazil has suffered an intense wave of COVID-19 associated with the Gamma variant. In July, the first cases of Delta variant were detected in the state of Rio de Janeiro. In this work, we have employed phylodynamic methods to analyse more than 1 600 genomic sequences of Delta variant collected until September in Rio de Janeiro to reconstruct how this variant has surpassed Gamma and dispersed throughout the state. After the introduction of Delta, it has initially spread mostly in the homonymous city of Rio de Janeiro, the most populous of the state. In a second stage, dispersal occurred to mid- and long-range cities, which acted as new close-range hubs for spread. We observed that the substitution of Gamma by Delta was possibly caused by its higher viral load, a proxy for transmissibility. This variant turnover prompted a new surge in cases, but with lower lethality than was observed during the peak caused by Gamma. We reason that high vaccination rates in the state of Rio de Janeiro were possibly what prevented a higher number of deaths.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil/epidemiology , COVID-19/epidemiology , Humans , SARS-CoV-2/genetics
3.
Viruses ; 14(8)2022 07 27.
Article in English | MEDLINE | ID: covidwho-1969493

ABSTRACT

In the present study, we provide a retrospective genomic surveillance of the SARS-CoV-2 pandemic in Lebanon; we newly sequence the viral genomes of 200 nasopharyngeal samples collected between July 2020 and February 2021 from patients in different regions of Lebanon and from travelers crossing the Lebanese-Syrian border, and we also analyze the Lebanese genomic dataset available at GISAID. Our results show that SARS-CoV-2 infections in Lebanon during this period were shaped by the turnovers of four dominant SARS-CoV-2 lineages, with B.1.398 being the first to thoroughly dominate. Lebanon acted as a dispersal center of B.1.398 to other countries, with intercontinental transmissions being more common than within-continent. Within the country, the district of Tripoli, which was the source of 43% of the total B.1.398 sequences in our study, was identified as being an important source of dispersal in the country. In conclusion, our findings exemplify the butterfly effect, by which a lineage that emerges in a small area can be spread around the world, and highlight the potential role of developing countries in the emergence of new variants.


Subject(s)
COVID-19 , COVID-19/epidemiology , Humans , Lebanon/epidemiology , Pandemics , Retrospective Studies , SARS-CoV-2/genetics
4.
Front Microbiol ; 13: 799713, 2022.
Article in English | MEDLINE | ID: covidwho-1903073

ABSTRACT

The COVID-19 pandemic has created an unprecedented need for epidemiological monitoring using diverse strategies. We conducted a project combining prevalence, seroprevalence, and genomic surveillance approaches to describe the initial pandemic stages in Betim City, Brazil. We collected 3239 subjects in a population-based age-, sex- and neighborhood-stratified, household, prospective; cross-sectional study divided into three surveys 21 days apart sampling the same geographical area. In the first survey, overall prevalence (participants positive in serological or molecular tests) reached 0.46% (90% CI 0.12-0.80%), followed by 2.69% (90% CI 1.88-3.49%) in the second survey and 6.67% (90% CI 5.42-7.92%) in the third. The underreporting reached 11, 19.6, and 20.4 times in each survey. We observed increased odds to test positive in females compared to males (OR 1.88 95% CI 1.25-2.82), while the single best predictor for positivity was ageusia/anosmia (OR 8.12, 95% CI 4.72-13.98). Thirty-five SARS-CoV-2 genomes were sequenced, of which 18 were classified as lineage B.1.1.28, while 17 were B.1.1.33. Multiple independent viral introductions were observed. Integration of multiple epidemiological strategies was able to adequately describe COVID-19 dispersion in the city. Presented results have helped local government authorities to guide pandemic management.

5.
Interface (Botucatu, Online) ; 26: e210206, 2022. ilus
Article in Portuguese | WHO COVID, LILACS (Americas) | ID: covidwho-1745253

ABSTRACT

Estudo teórico de cunho reflexivo que aborda o fenômeno da contenção ambiental em instituições de longa permanência para idosos, apresentando o tema à luz dos direitos humanos e da legislação em vigor, que pregam boas práticas de cuidado aos idosos institucionalizados, inclusive frente ao cenário de enfrentamento à Covid-19. Considerando os impactos negativos da contenção ambiental na saúde física e mental dos idosos, sugere-se maior capacitação da equipe técnica das instituições de longa permanência para idosos e prospecção do fenômeno para garantia de condições mais dignas e que respeitem a liberdade dos idosos. (AU)


Estudio teórico de cuño reflexivo que aborda el fenómeno de la contención ambiental en instituciones de larga permanencia para ancianos, presentando el tema a la luz de los derechos humanos y de la legislación en vigor que proponen buenas prácticas de cuidado para los ancianos institucionalizados, incluso ante el escenario del enfrentamiento a la Covid-19. Considerando los impactos negativos de la contención ambiental en la salud física y mental de los ancianos, se sugiere mayor capacitación del equipo técnico de las instituciones de larga permanencia para ancianos y prospección del fenómeno para garantía de condiciones más dignas y que respeten la libertad de los ancianos. (AU)


A theoretical and reflexive study addressing the phenomenon of environmental restraint in long-term care facilities for the elderly, presenting the topic under the light of human rights and the legislation in force, which postulate good care practices to institutionalized elderly even in the face of the Covid-19 situation. By considering the negative impacts of environmental restraint on the physical and mental health of the elderly, it is suggested that the technical team of long-term care institutions for the elderly should be better trained, and that the phenomenon needs to be explored to guarantee more dignified conditions that respect the freedom of the elderly. (AU)

6.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-1733144

ABSTRACT

In this study, we report the first case of intra-host SARS-CoV-2 recombination during a coinfection by the variants of concern (VOC) AY.33 (Delta) and P.1 (Gamma) supported by sequencing reads harboring a mosaic of lineage-defining mutations. By using next-generation sequencing reads intersecting regions that simultaneously overlap lineage-defining mutations from Gamma and Delta, we were able to identify a total of six recombinant regions across the SARS-CoV-2 genome within a sample. Four of them mapped in the spike gene and two in the nucleocapsid gene. We detected mosaic reads harboring a combination of lineage-defining mutations from each VOC. To our knowledge, this is the first report of intra-host RNA-RNA recombination between two lineages of SARS-CoV-2, which can represent a threat to public health management during the COVID-19 pandemic due to the possibility of the emergence of viruses with recombinant phenotypes.

7.
Mem Inst Oswaldo Cruz ; 116: e210176, 2022.
Article in English | MEDLINE | ID: covidwho-1725021

ABSTRACT

BACKGROUND: During routine Coronavirus disease 2019 (COVID-19) diagnosis, an unusually high viral load was detected by reverse transcription real-time polymerase chain reaction (RT-qPCR) in a nasopharyngeal swab sample collected from a patient with respiratory and neurological symptoms who rapidly succumbed to the disease. Therefore we sought to characterise the infection. OBJECTIVES: We aimed to determine and characterise the etiological agent responsible for the poor outcome. METHODS: Classical virological methods, such as plaque assay and plaque reduction neutralisation test combined with amplicon-based sequencing, as well as a viral metagenomic approach, were performed to characterise the etiological agents of the infection. FINDINGS: Plaque assay revealed two distinct plaque phenotypes, suggesting either the presence of two severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains or a productive coinfection of two different species of virus. Amplicon-based sequencing did not support the presence of any SARS-CoV-2 genetic variants that would explain the high viral load and suggested the presence of a single SARS-CoV-2 strain. Nonetheless, the viral metagenomic analysis revealed that Coronaviridae and Herpesviridae were the predominant virus families within the sample. This finding was confirmed by a plaque reduction neutralisation test and PCR. MAIN CONCLUSIONS: We characterised a productive coinfection of SARS-CoV-2 and Herpes simplex virus 1 (HSV-1) in a patient with severe symptoms that succumbed to the disease. Although we cannot establish the causal relationship between the coinfection and the severity of the clinical case, this work serves as a warning for future studies focused on the interplay between SARS-CoV-2 and HSV-1 coinfection and COVID-19 severity.


Subject(s)
COVID-19 , Coinfection , Herpesvirus 1, Human , Herpesvirus 1, Human/genetics , Humans , Real-Time Polymerase Chain Reaction , SARS-CoV-2
8.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-296026

ABSTRACT

Summary SARS-CoV-2 is a novel coronavirus that causes acute respiratory distress syndrome (ARDS), death and long-term sequelae. Innate immune cells are critical for host defense but are also the primary drivers of ARDS. The relationships between innate cellular responses in ARDS resulting from COVID-19 compared to other causes of ARDS, such as bacterial sepsis is unclear. Moreover, the beneficial effects of dexamethasone therapy during severe COVID-19 remain speculative, but understanding the mechanistic effects could improve evidence-based therapeutic interventions. To interrogate these relationships, we developed an scRNA-Seq and plasma proteomics atlas ( biernaskielab.ca/COVID_neutrophil ). We discovered that compared to bacterial ARDS, COVID-19 was associated with distinct neutrophil polarization characterized by either interferon (IFN) or prostaglandin (PG) active states. Neutrophils from bacterial ARDS had higher expression of antibacterial molecules such as PLAC8 and CD83. Dexamethasone therapy in COVID patients rapidly altered the IFN active state, downregulated interferon responsive genes, and activated IL1R2 +ve neutrophils. Dexamethasone also induced the emergence of immature neutrophils expressing immunosuppressive molecules ARG1 and ANXA1, which were not present in healthy controls. Moreover, dexamethasone remodeled global cellular interactions by changing neutrophils from information receivers into information providers. Importantly, male patients had higher proportions of IFN active neutrophils, a greater degree of steroid-induced immature neutrophil expansion, and increased mortality benefit compared to females in the dexamethasone era. Indeed, the highest proportion of IFN active neutrophils was associated with mortality. These results define neutrophil states unique to COVID-19 when contextualized to other life-threatening infections, thereby enhancing the relevance of our findings at the bedside. Furthermore, the molecular benefits of dexamethasone therapy are also defined, and the identified pathways and plasma proteins can now be targeted to develop improved therapeutics.

9.
Nat Med ; 28(1): 201-211, 2022 01.
Article in English | MEDLINE | ID: covidwho-1517637

ABSTRACT

Although critical for host defense, innate immune cells are also pathologic drivers of acute respiratory distress syndrome (ARDS). Innate immune dynamics during Coronavirus Disease 2019 (COVID-19) ARDS, compared to ARDS from other respiratory pathogens, is unclear. Moreover, mechanisms underlying the beneficial effects of dexamethasone during severe COVID-19 remain elusive. Using single-cell RNA sequencing and plasma proteomics, we discovered that, compared to bacterial ARDS, COVID-19 was associated with expansion of distinct neutrophil states characterized by interferon (IFN) and prostaglandin signaling. Dexamethasone during severe COVID-19 affected circulating neutrophils, altered IFNactive neutrophils, downregulated interferon-stimulated genes and activated IL-1R2+ neutrophils. Dexamethasone also expanded immunosuppressive immature neutrophils and remodeled cellular interactions by changing neutrophils from information receivers into information providers. Male patients had higher proportions of IFNactive neutrophils and preferential steroid-induced immature neutrophil expansion, potentially affecting outcomes. Our single-cell atlas (see 'Data availability' section) defines COVID-19-enriched neutrophil states and molecular mechanisms of dexamethasone action to develop targeted immunotherapies for severe COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/immunology , Dexamethasone/therapeutic use , Glucocorticoids/therapeutic use , Neutrophils/immunology , Pneumonia, Bacterial/immunology , Respiratory Distress Syndrome/immunology , Adult , Aged , COVID-19/complications , COVID-19/drug therapy , COVID-19/genetics , Cell Communication , Chromatography, Liquid , Down-Regulation , Female , Gene Regulatory Networks , Humans , Immunity, Innate/immunology , Interferons/immunology , Male , Middle Aged , Neutrophils/metabolism , Pneumonia, Bacterial/complications , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/genetics , Prostaglandins/immunology , Proteomics , RNA-Seq , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/genetics , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Single-Cell Analysis , Tandem Mass Spectrometry
11.
Front Public Health ; 9: 745310, 2021.
Article in English | MEDLINE | ID: covidwho-1477894

ABSTRACT

The emergence of several SARS-CoV-2 lineages presenting adaptive mutations is a matter of concern worldwide due to their potential ability to increase transmission and/or evade the immune response. While performing epidemiological and genomic surveillance of SARS-CoV-2 in samples from Porto Ferreira-São Paulo-Brazil, we identified sequences classified by pangolin as B.1.1.28 harboring Spike L452R mutation, in the RBD region. Phylogenetic analysis revealed that these sequences grouped into a monophyletic branch, with others from Brazil, mainly from the state of São Paulo. The sequences had a set of 15 clade defining amino acid mutations, of which six were in the Spike protein. A new lineage was proposed to Pango and it was accepted and designated P.4. In samples from the city of Porto Ferreira, P.4 lineage has been increasing in frequency since it was first detected in March 2021, corresponding to 34.7% of the samples sequenced in June, the second in prevalence after P.1. Also, it is circulating in 30 cities from the state of São Paulo, and it was also detected in one sample from the state of Sergipe and two from the state of Rio de Janeiro. Further studies are needed to understand whether P.4 should be considered a new threat.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil , Humans , Mutation , Phylogeny , Spike Glycoprotein, Coronavirus/genetics
12.
PLoS Negl Trop Dis ; 15(10): e0009835, 2021 10.
Article in English | MEDLINE | ID: covidwho-1468151

ABSTRACT

The sharp increase of COVID-19 cases in late 2020 has made Brazil the new epicenter of the ongoing SARS-CoV-2 pandemic. The novel viral lineages P.1 (Variant of Concern Gamma) and P.2, respectively identified in the Brazilian states of Amazonas and Rio de Janeiro, have been associated with potentially higher transmission rates and antibody neutralization escape. In this study, we performed the whole-genome sequencing of 185 samples isolated from three out of the five Brazilian regions, including Amazonas (North region), Rio Grande do Norte, Paraíba and Bahia (Northeast region), and Rio de Janeiro (Southeast region) in order to monitor the spread of SARS-CoV-2 lineages in Brazil in the first months of 2021. Here, we showed a widespread dispersal of P.1 and P.2 across Brazilian regions and, except for Amazonas, P.2 was the predominant lineage identified in the sampled states. We estimated the origin of P.2 lineage to have happened in February, 2020 and identified that it has differentiated into new clades. Interstate transmission of P.2 was detected since March, but reached its peak in December, 2020 and January, 2021. Transmission of P.1 was also high in December and its origin was inferred to have happened in August 2020. We also confirmed the presence of lineage P.7, recently described in the southernmost region of Brazil, to have spread across the Northeastern states. P.1, P.2 and P.7 are descended from the ancient B.1.1.28 strain, which co-dominated the first phase of the pandemic in Brazil with the B.1.1.33 strain. We also identified the occurrence of a new lineage descending from B.1.1.33 that convergently carries the E484K mutation, N.9. Indeed, the recurrent report of many novel SARS-CoV-2 genetic variants in Brazil could be due to the absence of effective control measures resulting in high SARS-CoV2 transmission rates. Altogether, our findings provided a landscape of the critical state of SARS-CoV-2 across Brazil and confirm the need to sustain continuous sequencing of the SARS-CoV-2 isolates worldwide in order to identify novel variants of interest and monitor for vaccine effectiveness.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Genome, Viral , Genomics/methods , SARS-CoV-2 , Brazil/epidemiology , COVID-19/transmission , Genetic Variation , High-Throughput Nucleotide Sequencing , Humans , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics
13.
Virus Evol ; 7(2): veab078, 2021 Sep 29.
Article in English | MEDLINE | ID: covidwho-1467409

ABSTRACT

Long-term infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a challenge to virus dispersion and the control of coronavirus disease 2019 (COVID-19) pandemic. The reason why some people have prolonged infection and how the virus persists for so long are still not fully understood. Recent studies suggested that the accumulation of intra-host single nucleotide variants (iSNVs) over the course of the infection might play an important role in persistence as well as emergence of mutations of concern. For this reason, we aimed to investigate the intra-host evolution of SARS-CoV-2 during prolonged infection. Thirty-three patients who remained reverse transcription polymerase chain reaction (RT-PCR) positive in the nasopharynx for on average 18 days from the symptoms onset were included in this study. Whole-genome sequences were obtained for each patient at two different time points. Phylogenetic, populational, and computational analyses of viral sequences were consistent with prolonged infection without evidence of coinfection in our cohort. We observed an elevated within-host genomic diversity at the second time point samples positively correlated with cycle threshold (Ct) values (lower viral load). Direct transmission was also confirmed in a small cluster of healthcare professionals that shared the same workplace by the presence of common iSNVs. A differential accumulation of missense variants between the time points was detected targeting crucial structural and non-structural proteins such as Spike and helicase. Interestingly, longitudinal acquisition of iSNVs in Spike protein coincided in many cases with SARS-CoV-2 reactive and predicted T cell epitopes. We observed a distinguishing pattern of mutations over the course of the infection mainly driven by increasing A→U and decreasing G→A signatures. G→A mutations may be associated with RNA-editing enzyme activities; therefore, the mutational profiles observed in our analysis were suggestive of innate immune mechanisms of the host cell defense. Therefore, we unveiled a dynamic and complex landscape of host and pathogen interaction during prolonged infection of SARS-CoV-2, suggesting that the host's innate immunity shapes the increase of intra-host diversity. Our findings may also shed light on possible mechanisms underlying the emergence and spread of new variants resistant to the host immune response as recently observed in COVID-19 pandemic.

14.
Viruses ; 13(10)2021 10 07.
Article in English | MEDLINE | ID: covidwho-1463835

ABSTRACT

In the present study, we provide a retrospective genomic epidemiology analysis of the SARS-CoV-2 pandemic in the state of Rio de Janeiro, Brazil. We gathered publicly available data from GISAID and sequenced 1927 new genomes sampled periodically from March 2021 to June 2021 from 91 out of the 92 cities of the state. Our results showed that the pandemic was characterized by three different phases driven by a successive replacement of lineages. Interestingly, we noticed that viral supercarriers accounted for the overwhelming majority of the circulating virus (>90%) among symptomatic individuals in the state. Moreover, SARS-CoV-2 genomic surveillance also revealed the emergence and spread of two new variants (P.5 and P.1.2), firstly reported in this study. Our findings provided important lessons learned from the different epidemiological aspects of the SARS-CoV-2 dynamic in Rio de Janeiro. Altogether, this might have a strong potential to shape future decisions aiming to improve public health management and understanding mechanisms underlying virus dispersion.


Subject(s)
COVID-19/epidemiology , Genome, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , COVID-19/mortality , Child , Child, Preschool , Disease Hotspot , Epidemiological Monitoring , Female , Gene Library , Humans , Infant , Infant, Newborn , Male , Middle Aged , Phylogeny , Retrospective Studies , Young Adult
16.
Virus Res ; 296: 198345, 2021 04 15.
Article in English | MEDLINE | ID: covidwho-1096264

ABSTRACT

Emergence of novel SARS-CoV-2 lineages are under the spotlight of the media, scientific community and governments. Recent reports of novel variants in the United Kingdom, South Africa and Brazil (B.1.1.28-E484K) have raised intense interest because of a possible higher transmission rate or resistance to the novel vaccines. Nevertheless, the spread of B.1.1.28 (E484K) and other variants in Brazil is still unknown. In this work, we investigated the population structure and genomic complexity of SARS-CoV-2 in Rio Grande do Sul, the southernmost state in Brazil. Most samples sequenced belonged to the B.1.1.28 (E484K) lineage, demonstrating its widespread dispersion. We were the first to identify two independent events of co-infection caused by the occurrence of B.1.1.28 (E484K) with either B.1.1.248 or B.1.91 lineages. Also, clustering analysis revealed the occurrence of a novel cluster of samples circulating in the state (named VUI-NP13L) characterized by 12 lineage-defining mutations. In light of the evidence for E484K dispersion, co-infection and emergence of VUI-NP13 L in Rio Grande do Sul, we reaffirm the importance of establishing strict and effective social distancing measures to counter the spread of potentially more hazardous SARS-CoV-2 strains.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , SARS-CoV-2/genetics , Brazil/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Cluster Analysis , Humans , Polymorphism, Single Nucleotide
18.
Science ; 369(6508): 1255-1260, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-675945

ABSTRACT

Brazil currently has one of the fastest-growing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemics in the world. Because of limited available data, assessments of the impact of nonpharmaceutical interventions (NPIs) on this virus spread remain challenging. Using a mobility-driven transmission model, we show that NPIs reduced the reproduction number from >3 to 1 to 1.6 in São Paulo and Rio de Janeiro. Sequencing of 427 new genomes and analysis of a geographically representative genomic dataset identified >100 international virus introductions in Brazil. We estimate that most (76%) of the Brazilian strains fell in three clades that were introduced from Europe between 22 February and 11 March 2020. During the early epidemic phase, we found that SARS-CoV-2 spread mostly locally and within state borders. After this period, despite sharp decreases in air travel, we estimated multiple exportations from large urban centers that coincided with a 25% increase in average traveled distances in national flights. This study sheds new light on the epidemic transmission and evolutionary trajectories of SARS-CoV-2 lineages in Brazil and provides evidence that current interventions remain insufficient to keep virus transmission under control in this country.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Basic Reproduction Number , Bayes Theorem , Betacoronavirus/classification , Brazil/epidemiology , COVID-19 , COVID-19 Testing , Cities/epidemiology , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Europe , Evolution, Molecular , Genome, Viral , Humans , Models, Genetic , Models, Statistical , Pandemics/prevention & control , Phylogeny , Phylogeography , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2 , Spatio-Temporal Analysis , Travel , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL