Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Virus Evol ; 8(1): veac024, 2022.
Article in English | MEDLINE | ID: covidwho-1774420

ABSTRACT

The coronavirus disease 2019 (COVID-19) epidemic in Brazil was driven mainly by the spread of Gamma (P.1), a locally emerged variant of concern (VOC) that was first detected in early January 2021. This variant was estimated to be responsible for more than 96 per cent of cases reported between January and June 2021, being associated with increased transmissibility and disease severity, a reduction in neutralization antibodies and effectiveness of treatments or vaccines, and diagnostic detection failure. Here we show that, following several importations predominantly from the USA, the Delta variant rapidly replaced Gamma after July 2021. However, in contrast to what was seen in other countries, the rapid spread of Delta did not lead to a large increase in the number of cases and deaths reported in Brazil. We suggest that this was likely due to the relatively successful early vaccination campaign coupled with natural immunity acquired following prior infection with Gamma. Our data reinforce reports of the increased transmissibility of the Delta variant and, considering the increasing concern due to the recently identified Omicron variant, argues for the necessity to strengthen genomic monitoring on a national level to quickly detect the emergence and spread of other VOCs that might threaten global health.

2.
Nature ; 603(7902): 679-686, 2022 03.
Article in English | MEDLINE | ID: covidwho-1638766

ABSTRACT

The SARS-CoV-2 epidemic in southern Africa has been characterized by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, while the second and third waves were driven by the Beta (B.1.351) and Delta (B.1.617.2) variants, respectively1-3. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron, B.1.1.529) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, which are predicted to influence antibody neutralization and spike function4. Here we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Immune Evasion , SARS-CoV-2/isolation & purification , Antibodies, Neutralizing/immunology , Botswana/epidemiology , COVID-19/immunology , COVID-19/transmission , Humans , Models, Molecular , Mutation , Phylogeny , Recombination, Genetic , SARS-CoV-2/classification , SARS-CoV-2/immunology , South Africa/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
3.
Sci Rep ; 11(1): 23775, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1565730

ABSTRACT

Early warning tools are crucial for the timely application of intervention strategies and the mitigation of the adverse health, social and economic effects associated with outbreaks of epidemic potential such as COVID-19. This paper introduces, the Epidemic Volatility Index (EVI), a new, conceptually simple, early warning tool for oncoming epidemic waves. EVI is based on the volatility of newly reported cases per unit of time, ideally per day, and issues an early warning when the volatility change rate exceeds a threshold. Data on the daily confirmed cases of COVID-19 are used to demonstrate the use of EVI. Results from the COVID-19 epidemic in Italy and New York State are presented here, based on the number of confirmed cases of COVID-19, from January 22, 2020, until April 13, 2021. Live daily updated predictions for all world countries and each of the United States of America are publicly available online. For Italy, the overall sensitivity for EVI was 0.82 (95% Confidence Intervals: 0.75; 0.89) and the specificity was 0.91 (0.88; 0.94). For New York, the corresponding values were 0.55 (0.47; 0.64) and 0.88 (0.84; 0.91). Consecutive issuance of early warnings is a strong indicator of main epidemic waves in any country or state. EVI's application to data from the current COVID-19 pandemic revealed a consistent and stable performance in terms of detecting new waves. The application of EVI to other epidemics and syndromic surveillance tasks in combination with existing early warning systems will enhance our ability to act swiftly and thereby enhance containment of outbreaks.


Subject(s)
COVID-19/epidemiology , Pandemics , Humans , Italy/epidemiology , New York/epidemiology , Predictive Value of Tests , Time Factors
5.
JAMA Netw Open ; 4(4): e218184, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1384070

ABSTRACT

Importance: Digital contact tracing (DCT) apps have been released in several countries to help interrupt SARS-CoV-2 transmission chains. However, the effect of DCT on pandemic mitigation remains to be demonstrated. Objective: To estimate key populations and performance indicators along the exposure notification cascade of the SwissCovid DCT app in a clearly defined regional and temporal context. Design, Setting, and Participants: This comparative effectiveness study was based on a simulation informed by measured data from issued quarantine recommendations and positive SARS-CoV-2 test results after DCT exposure notifications in the canton of Zurich. A stochastic model was developed to re-create the DCT notification cascade for Zurich. Population sizes at each cascade step were estimated using triangulation based on publicly available administrative and observational research data for the study duration from September 1 to October 31, 2020. The resultant estimates were checked for internal consistency and consistency with upstream or downstream estimates in the cascade. Stochastic sampling from data-informed parameter distributions was performed to explore the robustness of results. Subsequently, key performance indicators were evaluated to assess the potential contribution of DCT compared with manual contact tracing. Main Outcomes and Measures: Receiving a voluntary quarantine recommendation and/or a positive SARS-CoV-2 test result after exposure notification. Results: In September 2020, 537 app users received a positive SARS-CoV-2 test result in Zurich, 324 of whom received and entered an upload authorization code. This code triggered an app notification for an estimated 1374 (95% simulation interval [SI], 932-2586) proximity contacts and led to 722 information hotline calls, with an estimated 170 callers (95% SI, 154-186) receiving a quarantine recommendation. An estimated 939 (95% SI, 720-1127) notified app users underwent testing for SARS-CoV-2, of whom 30 (95% SI, 23-36) had positive results after an app notification. Key indicator evaluations revealed that the DCT app triggered quarantine recommendations for the equivalent of 5% of all exposed contacts placed in quarantine by manual contact tracing. For every 10.9 (95% SI, 7.6-15.6) upload authorization codes entered in the app, 1 contact had positive test results for SARS-CoV-2 after app notification. Longitudinal indicator analyses demonstrated bottlenecks in the notification cascade, because capacity limits were reached owing to an increased incidence of SARS-CoV-2 infection in October 2020. Conclusions and Relevance: In this simulation study of the notification cascade of the SwissCovid DCT app, receipt of exposure notifications was associated with quarantine recommendations and identification of SARS-CoV-2-positive cases. These findings in notified proximity contacts reflect important intermediary steps toward transmission prevention.


Subject(s)
COVID-19 , Computer Simulation , Contact Tracing , Disease Notification , Disease Transmission, Infectious , Mobile Applications , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Contact Tracing/methods , Contact Tracing/statistics & numerical data , Disease Notification/methods , Disease Notification/statistics & numerical data , Disease Transmission, Infectious/prevention & control , Disease Transmission, Infectious/statistics & numerical data , Female , Humans , Male , Quarantine , SARS-CoV-2/isolation & purification , Switzerland/epidemiology
6.
Epidemics ; 37: 100480, 2021 12.
Article in English | MEDLINE | ID: covidwho-1347598

ABSTRACT

BACKGROUND: In December 2020, the United Kingdom (UK) reported a SARS-CoV-2 Variant of Concern (VoC) which is now named B.1.1.7. Based on initial data from the UK and later data from other countries, this variant was estimated to have a transmission fitness advantage of around 40-80 % (Volz et al., 2021; Leung et al., 2021; Davies et al., 2021). AIM: This study aims to estimate the transmission fitness advantage and the effective reproductive number of B.1.1.7 through time based on data from Switzerland. METHODS: We generated whole genome sequences from 11.8 % of all confirmed SARS-CoV-2 cases in Switzerland between 14 December 2020 and 11 March 2021. Based on these data, we determine the daily frequency of the B.1.1.7 variant and quantify the variant's transmission fitness advantage on a national and a regional scale. RESULTS: We estimate B.1.1.7 had a transmission fitness advantage of 43-52 % compared to the other variants circulating in Switzerland during the study period. Further, we estimate B.1.1.7 had a reproductive number above 1 from 01 January 2021 until the end of the study period, compared to below 1 for the other variants. Specifically, we estimate the reproductive number for B.1.1.7 was 1.24 [1.07-1.41] from 01 January until 17 January 2021 and 1.18 [1.06-1.30] from 18 January until 01 March 2021 based on the whole genome sequencing data. From 10 March to 16 March 2021, once B.1.1.7 was dominant, we estimate the reproductive number was 1.14 [1.00-1.26] based on all confirmed cases. For reference, Switzerland applied more non-pharmaceutical interventions to combat SARS-CoV-2 on 18 January 2021 and lifted some measures again on 01 March 2021. CONCLUSION: The observed increase in B.1.1.7 frequency in Switzerland during the study period is as expected based on observations in the UK. In absolute numbers, B.1.1.7 increased exponentially with an estimated doubling time of around 2-3.5 weeks. To monitor the ongoing spread of B.1.1.7, our plots are available online.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Switzerland/epidemiology , United Kingdom
7.
Lancet Public Health ; 6(9): e683-e691, 2021 09.
Article in English | MEDLINE | ID: covidwho-1305339

ABSTRACT

BACKGROUND: The inverse care law states that disadvantaged populations need more health care than advantaged populations but receive less. Gaps in COVID-19-related health care and infection control are not well understood. We aimed to examine inequalities in health in the care cascade from testing for SARS-CoV-2 to COVID-19-related hospitalisation, intensive care unit (ICU) admission, and death in Switzerland, a wealthy country strongly affected by the pandemic. METHODS: We analysed surveillance data reported to the Swiss Federal Office of Public Health from March 1, 2020, to April 16, 2021, and 2018 population data. We geocoded residential addresses of notifications to identify the Swiss neighbourhood index of socioeconomic position (Swiss-SEP). The index describes 1·27 million small neighbourhoods of approximately 50 households each on the basis of rent per m2, education and occupation of household heads, and crowding. We used negative binomial regression models to calculate incidence rate ratios (IRRs) with 95% credible intervals (CrIs) of the association between ten groups of the Swiss-SEP index defined by deciles (1=lowest, 10=highest) and outcomes. Models were adjusted for sex, age, canton, and wave of the epidemic (before or after June 8, 2020). We used three different denominators: the general population, the number of tests, and the number of positive tests. FINDINGS: Analyses were based on 4 129 636 tests, 609 782 positive tests, 26 143 hospitalisations, 2432 ICU admissions, 9383 deaths, and 8 221 406 residents. Comparing the highest with the lowest Swiss-SEP group and using the general population as the denominator, more tests were done among people living in neighbourhoods of highest SEP compared with lowest SEP (adjusted IRR 1·18 [95% CrI 1·02-1·36]). Among tested people, test positivity was lower (0·75 [0·69-0·81]) in neighbourhoods of highest SEP than of lowest SEP. Among people testing positive, the adjusted IRR was 0·68 (0·62-0·74) for hospitalisation, was 0·54 (0·43-0·70) for ICU admission, and 0·86 (0·76-0·99) for death. The associations between neighbourhood SEP and outcomes were stronger in younger age groups and we found heterogeneity between areas. INTERPRETATION: The inverse care law and socioeconomic inequalities were evident in Switzerland during the COVID-19 epidemic. People living in neighbourhoods of low SEP were less likely to be tested but more likely to test positive, be admitted to hospital, or die, compared with those in areas of high SEP. It is essential to continue to monitor testing for SARS-CoV-2, access and uptake of COVID-19 vaccination and outcomes of COVID-19. Governments and health-care systems should address this pandemic of inequality by taking measures to reduce health inequalities in response to the SARS-CoV-2 pandemic. FUNDING: Swiss Federal Office of Public Health, Swiss National Science Foundation, EU Horizon 2020, Branco Weiss Foundation.


Subject(s)
COVID-19/therapy , Healthcare Disparities/statistics & numerical data , Social Class , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19 Testing/statistics & numerical data , Child , Child, Preschool , Female , Hospitalization/statistics & numerical data , Humans , Infant , Infant, Newborn , Intensive Care Units , Male , Middle Aged , Switzerland/epidemiology , Young Adult
8.
Sci Rep ; 11(1): 14107, 2021 07 08.
Article in English | MEDLINE | ID: covidwho-1303788

ABSTRACT

The number of secondary cases, i.e. the number of new infections generated by an infectious individual, is an important parameter for the control of infectious diseases. When individual variation in disease transmission is present, like for COVID-19, the distribution of the number of secondary cases is skewed and often modeled using a negative binomial distribution. However, this may not always be the best distribution to describe the underlying transmission process. We propose the use of three other offspring distributions to quantify heterogeneity in transmission, and we assess the possible bias in estimates of the mean and variance of this distribution when the data generating distribution is different from the one used for inference. We also analyze COVID-19 data from Hong Kong, India, and Rwanda, and quantify the proportion of cases responsible for 80% of transmission, [Formula: see text], while acknowledging the variation arising from the assumed offspring distribution. In a simulation study, we find that variance estimates may be biased when there is a substantial amount of heterogeneity, and that selection of the most accurate distribution from a set of distributions is important. In addition we find that the number of secondary cases for two of the three COVID-19 datasets is better described by a Poisson-lognormal distribution.


Subject(s)
COVID-19/transmission , COVID-19/virology , Infectious Disease Transmission, Vertical/statistics & numerical data , SARS-CoV-2 , COVID-19/epidemiology , Computer Simulation , Hong Kong/epidemiology , Humans , India/epidemiology , Poisson Distribution , Rwanda/epidemiology
9.
Nature ; 595(7869): 707-712, 2021 07.
Article in English | MEDLINE | ID: covidwho-1258587

ABSTRACT

Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3-5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant's success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2/isolation & purification , Seasons , COVID-19/diagnosis , COVID-19/epidemiology , Europe/epidemiology , Genotype , Humans , Phylogeny , SARS-CoV-2/genetics , Time Factors , Travel/legislation & jurisprudence , Travel/statistics & numerical data
11.
medRxiv ; 2021 Mar 24.
Article in English | MEDLINE | ID: covidwho-955723

ABSTRACT

Following its emergence in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic resulting in unprecedented efforts to reduce transmission and develop therapies and vaccines (WHO Emergency Committee, 2020; Zhu et al., 2020). Rapidly generated viral genome sequences have allowed the spread of the virus to be tracked via phylogenetic analysis (Worobey et al., 2020; Hadfield et al., 2018; Pybus et al., 2020). While the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced, allowing continent-specific variants to emerge. However, within Europe travel resumed in the summer of 2020, and the impact of this travel on the epidemic is not well understood. Here we report on a novel SARS-CoV-2 variant, 20E (EU1), that emerged in Spain in early summer, and subsequently spread to multiple locations in Europe. We find no evidence of increased transmissibility of this variant, but instead demonstrate how rising incidence in Spain, resumption of travel across Europe, and lack of effective screening and containment may explain the variant's success. Despite travel restrictions and quarantine requirements, we estimate 20E (EU1) was introduced hundreds of times to countries across Europe by summertime travellers, likely undermining local efforts to keep SARS-CoV-2 cases low. Our results demonstrate how a variant can rapidly become dominant even in absence of a substantial transmission advantage in favorable epidemiological settings. Genomic surveillance is critical to understanding how travel can impact SARS-CoV-2 transmission, and thus for informing future containment strategies as travel resumes.

13.
PLoS Med ; 17(7): e1003189, 2020 07.
Article in English | MEDLINE | ID: covidwho-690567

ABSTRACT

BACKGROUND: As of 16 May 2020, more than 4.5 million cases and more than 300,000 deaths from disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported. Reliable estimates of mortality from SARS-CoV-2 infection are essential for understanding clinical prognosis, planning healthcare capacity, and epidemic forecasting. The case-fatality ratio (CFR), calculated from total numbers of reported cases and reported deaths, is the most commonly reported metric, but it can be a misleading measure of overall mortality. The objectives of this study were to (1) simulate the transmission dynamics of SARS-CoV-2 using publicly available surveillance data and (2) infer estimates of SARS-CoV-2 mortality adjusted for biases and examine the CFR, the symptomatic case-fatality ratio (sCFR), and the infection-fatality ratio (IFR) in different geographic locations. METHOD AND FINDINGS: We developed an age-stratified susceptible-exposed-infected-removed (SEIR) compartmental model describing the dynamics of transmission and mortality during the SARS-CoV-2 epidemic. Our model accounts for two biases: preferential ascertainment of severe cases and right-censoring of mortality. We fitted the transmission model to surveillance data from Hubei Province, China, and applied the same model to six regions in Europe: Austria, Bavaria (Germany), Baden-Württemberg (Germany), Lombardy (Italy), Spain, and Switzerland. In Hubei, the baseline estimates were as follows: CFR 2.4% (95% credible interval [CrI] 2.1%-2.8%), sCFR 3.7% (3.2%-4.2%), and IFR 2.9% (2.4%-3.5%). Estimated measures of mortality changed over time. Across the six locations in Europe, estimates of CFR varied widely. Estimates of sCFR and IFR, adjusted for bias, were more similar to each other but still showed some degree of heterogeneity. Estimates of IFR ranged from 0.5% (95% CrI 0.4%-0.6%) in Switzerland to 1.4% (1.1%-1.6%) in Lombardy, Italy. In all locations, mortality increased with age. Among individuals 80 years or older, estimates of the IFR suggest that the proportion of all those infected with SARS-CoV-2 who will die ranges from 20% (95% CrI 16%-26%) in Switzerland to 34% (95% CrI 28%-40%) in Spain. A limitation of the model is that count data by date of onset are required, and these are not available in all countries. CONCLUSIONS: We propose a comprehensive solution to the estimation of SARS-Cov-2 mortality from surveillance data during outbreaks. The CFR is not a good predictor of overall mortality from SARS-CoV-2 and should not be used for evaluation of policy or comparison across settings. Geographic differences in IFR suggest that a single IFR should not be applied to all settings to estimate the total size of the SARS-CoV-2 epidemic in different countries. The sCFR and IFR, adjusted for right-censoring and preferential ascertainment of severe cases, are measures that can be used to improve and monitor clinical and public health strategies to reduce the deaths from SARS-CoV-2 infection.


Subject(s)
Coronavirus Infections/mortality , Pneumonia, Viral/mortality , Age Factors , Betacoronavirus/isolation & purification , COVID-19 , China/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Europe/epidemiology , Humans , Models, Statistical , Pandemics , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2
14.
Eur J Epidemiol ; 35(5): 389-399, 2020 May.
Article in English | MEDLINE | ID: covidwho-306254

ABSTRACT

To date, non-pharmacological interventions (NPI) have been the mainstay for controlling the coronavirus disease-2019 (COVID-19) pandemic. While NPIs are effective in preventing health systems overload, these long-term measures are likely to have significant adverse economic consequences. Therefore, many countries are currently considering to lift the NPIs-increasing the likelihood of disease resurgence. In this regard, dynamic NPIs, with intervals of relaxed social distancing, may provide a more suitable alternative. However, the ideal frequency and duration of intermittent NPIs, and the ideal "break" when interventions can be temporarily relaxed, remain uncertain, especially in resource-poor settings. We employed a multivariate prediction model, based on up-to-date transmission and clinical parameters, to simulate outbreak trajectories in 16 countries, from diverse regions and economic categories. In each country, we then modelled the impacts on intensive care unit (ICU) admissions and deaths over an 18-month period for following scenarios: (1) no intervention, (2) consecutive cycles of mitigation measures followed by a relaxation period, and (3) consecutive cycles of suppression measures followed by a relaxation period. We defined these dynamic interventions based on reduction of the mean reproduction number during each cycle, assuming a basic reproduction number (R0) of 2.2 for no intervention, and subsequent effective reproduction numbers (R) of 0.8 and 0.5 for illustrative dynamic mitigation and suppression interventions, respectively. We found that dynamic cycles of 50-day mitigation followed by a 30-day relaxation reduced transmission, however, were unsuccessful in lowering ICU hospitalizations below manageable limits. By contrast, dynamic cycles of 50-day suppression followed by a 30-day relaxation kept the ICU demands below the national capacities. Additionally, we estimated that a significant number of new infections and deaths, especially in resource-poor countries, would be averted if these dynamic suppression measures were kept in place over an 18-month period. This multi-country analysis demonstrates that intermittent reductions of R below 1 through a potential combination of suppression interventions and relaxation can be an effective strategy for COVID-19 pandemic control. Such a "schedule" of social distancing might be particularly relevant to low-income countries, where a single, prolonged suppression intervention is unsustainable. Efficient implementation of dynamic suppression interventions, therefore, confers a pragmatic option to: (1) prevent critical care overload and deaths, (2) gain time to develop preventive and clinical measures, and (3) reduce economic hardship globally.


Subject(s)
Communicable Disease Control/methods , Coronavirus Infections/prevention & control , Coronavirus , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Humans , Models, Theoretical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , SARS-CoV-2
15.
Swiss Med Wkly ; 150: w20225, 2020 03 09.
Article in English | MEDLINE | ID: covidwho-13013

ABSTRACT

Switzerland is among the countries with the highest number of coronavirus disease-2019 (COVID-19) cases per capita in the world. There are likely many people with undetected SARS-CoV-2 infection because testing efforts are currently not detecting all infected people, including some with clinical disease compatible with COVID-19. Testing on its own will not stop the spread of SARS-CoV-2. Testing is part of a strategy. The World Health Organization recommends a combination of measures: rapid diagnosis and immediate isolation of cases, rigorous tracking and precautionary self-isolation of close contacts. In this article, we explain why the testing strategy in Switzerland should be strengthened urgently, as a core component of a combination approach to control COVID-19.


Subject(s)
Contact Tracing , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Disease Outbreaks/prevention & control , Patient Isolation , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Public Health Surveillance , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Humans , Mass Screening , Pneumonia, Viral/epidemiology , Quarantine , SARS-CoV-2 , Switzerland/epidemiology
16.
Euro Surveill ; 25(4)2020 01.
Article in English | MEDLINE | ID: covidwho-278

ABSTRACT

Since December 2019, China has been experiencing a large outbreak of a novel coronavirus (2019-nCoV) which can cause respiratory disease and severe pneumonia. We estimated the basic reproduction number R0 of 2019-nCoV to be around 2.2 (90% high density interval: 1.4-3.8), indicating the potential for sustained human-to-human transmission. Transmission characteristics appear to be of similar magnitude to severe acute respiratory syndrome-related coronavirus (SARS-CoV) and pandemic influenza, indicating a risk of global spread.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/transmission , Disease Outbreaks/statistics & numerical data , Pneumonia, Viral/transmission , Severe Acute Respiratory Syndrome/transmission , Virus Replication , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Global Health , Humans , Infection Control , Influenza A virus/pathogenicity , Influenza, Human/transmission , Pandemics , Pneumonia, Viral/epidemiology , Risk , SARS Virus/pathogenicity , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL