Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Arch Dis Child ; 2022 Jul 20.
Article in English | MEDLINE | ID: covidwho-1950051

ABSTRACT

OBJECTIVE: To understand community seroprevalence of SARS-CoV-2 in children and adolescents. This is vital to understanding the susceptibility of this cohort to COVID-19 and to inform public health policy for disease control such as immunisation. DESIGN: We conducted a community-based cross-sectional seroprevalence study in participants aged 0-18 years old recruiting from seven regions in England between October 2019 and June 2021 and collecting extensive demographic and symptom data. Serum samples were tested for antibodies against SARS-CoV-2 spike and nucleocapsid proteins using Roche assays processed at UK Health Security Agency laboratories. Prevalence estimates were calculated for six time periods and were standardised by age group, ethnicity and National Health Service region. RESULTS: Post-first wave (June-August 2020), the (anti-spike IgG) adjusted seroprevalence was 5.2%, varying from 0.9% (participants 10-14 years old) to 9.5% (participants 5-9 years old). By April-June 2021, this had increased to 19.9%, varying from 13.9% (participants 0-4 years old) to 32.7% (participants 15-18 years old). Minority ethnic groups had higher risk of SARS-CoV-2 seropositivity than white participants (OR 1.4, 95% CI 1.0 to 2.0), after adjusting for sex, age, region, time period, deprivation and urban/rural geography. In children <10 years, there were no symptoms or symptom clusters that reliably predicted seropositivity. Overall, 48% of seropositive participants with complete questionnaire data recalled no symptoms between February 2020 and their study visit. CONCLUSIONS: Approximately one-third of participants aged 15-18 years old had evidence of antibodies against SARS-CoV-2 prior to the introduction of widespread vaccination. These data demonstrate that ethnic background is independently associated with risk of SARS-CoV-2 infection in children. TRIAL REGISTRATION NUMBER: NCT04061382.

2.
Nat Microbiol ; 7(8): 1180-1188, 2022 08.
Article in English | MEDLINE | ID: covidwho-1931412

ABSTRACT

SARS-CoV-2 variants may threaten the effectiveness of vaccines and antivirals to mitigate serious COVID-19 disease. This is of most concern in clinically vulnerable groups such as older adults. We analysed 72 sera samples from 37 individuals, aged 70-89 years, vaccinated with two doses of BNT162b2 (Pfizer-BioNTech) 3 weeks apart, for neutralizing antibody responses to wildtype SARS-CoV-2. Between 3 and 20 weeks after the second vaccine dose, neutralizing antibody titres fell 4.9-fold to a median titre of 21.3 (neutralization dose 80%), with 21.6% of individuals having no detectable neutralizing antibodies at the later time point. Next, we examined neutralization of 21 distinct SARS-CoV-2 variant spike proteins with these sera, and confirmed substantial antigenic escape, especially for the Omicron (B.1.1.529, BA.1/BA.2), Beta (B.1.351), Delta (B.1.617.2), Theta (P.3), C.1.2 and B.1.638 spike variants. By combining pseudotype neutralization with specific receptor-binding domain (RBD) enzyme-linked immunosorbent assays, we showed that changes to position 484 in the spike RBD were mainly responsible for SARS-CoV-2 neutralizing antibody escape. Nineteen sera from the same individuals boosted with a third dose of BNT162b2 contained higher neutralizing antibody titres, providing cross-protection against Omicron BA.1 and BA.2. Despite SARS-CoV-2 immunity waning over time in older adults, booster vaccines can elicit broad neutralizing antibodies against a large number of SARS-CoV-2 variants in this clinically vulnerable cohort.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Membrane Glycoproteins/chemistry , Neutralization Tests , SARS-CoV-2/genetics , Viral Envelope Proteins/chemistry
3.
Front Immunol ; 13: 882515, 2022.
Article in English | MEDLINE | ID: covidwho-1903016

ABSTRACT

Children and adolescents generally experience mild COVID-19. However, those with underlying physical health conditions are at a significantly increased risk of severe disease. Here, we present a comprehensive analysis of antibody and cellular responses in adolescents with severe neuro-disabilities who received COVID-19 vaccination with either ChAdOx1 (n=6) or an mRNA vaccine (mRNA-1273, n=8, BNT162b2, n=1). Strong immune responses were observed after vaccination and antibody levels and neutralisation titres were both higher after two doses. Both measures were also higher after mRNA vaccination and were further enhanced by prior natural infection where one vaccine dose was sufficient to generate peak antibody response. Robust T-cell responses were generated after dual vaccination and were also higher following mRNA vaccination. Early T-cells were characterised by a dominant effector-memory CD4+ T-cell population with a type-1 cytokine signature with additional production of IL-10. Antibody levels were well-maintained for at least 3 months after vaccination and 3 of 4 donors showed measurable neutralisation titres against the Omicron variant. T-cell responses also remained robust, with generation of a central/stem cell memory pool and showed strong reactivity against Omicron spike. These data demonstrate that COVID-19 vaccines display strong immunogenicity in adolescents and that dual vaccination, or single vaccination following prior infection, generate higher immune responses than seen after natural infection and develop activity against Omicron. Initial evidence suggests that mRNA vaccination elicits stronger immune responses than adenoviral delivery, although the latter is also higher than seen in adult populations. COVID-19 vaccines are therefore highly immunogenic in high-risk adolescents and dual vaccination might be able to provide relative protection against the Omicron variant that is currently globally dominant.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Adolescent , Adult , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Humans , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
4.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-337649

ABSTRACT

Over the course of the pandemic variants have arisen at a steady rate. The most recent variants to emerge, BA.4 and BA.5, form part of the Omicron lineage and were first found in Southern Africa where they are driving the current wave of infection. In this report, we perform an in-depth characterisation of the antigenicity of the BA.4/BA.5 Spike protein by comparing sera collected post-vaccination, post-BA.1 or BA.2 infection, or post breakthrough infection of vaccinated individuals with the Omicron variant. In addition, we assess sensitivity to neutralisation by commonly used therapeutic monoclonal antibodies. We find sera collected post-vaccination have a similar ability to neutralise BA.1, BA.2 and BA.4/BA.5. In contrast, in the absence of vaccination, prior infection with BA.2 or, in particular, BA.1 results in an antibody response that neutralises BA.4/BA.5 poorly. Breakthrough infection with Omicron in vaccinees leads to a broad neutralising response against the new variants. The sensitivity of BA.4/BA.5 to neutralisation by therapeutic monoclonal antibodies was similar to that of BA.2. These data suggest BA.4/BA.5 are antigenically distinct from BA.1 and, to a lesser extent, BA.2. The enhanced breadth of neutralisation observed following breakthrough infection with Omicron suggests that vaccination with heterologous or multivalent antigens may represent viable strategies for the development of cross-neutralising antibody responses.

5.
Clin Infect Dis ; 75(1): e962-e973, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1852990

ABSTRACT

BACKGROUND: We aimed to quantify the unknown losses in health-related quality of life of coronavirus disease 2019 (COVID-19) cases using quality-adjusted lifedays (QALDs) and the recommended EQ-5D instrument in England. METHODS: Prospective cohort study of nonhospitalized, polymerase chain reaction (PCR)-confirmed severe acute respiratory syndrome coronavirus 2-positive (SARS-CoV-2-positive) cases aged 12-85 years and followed up for 6 months from 1 December 2020, with cross-sectional comparison to SARS-CoV-2-negative controls. Main outcomes were QALD losses; physical symptoms; and COVID-19-related private expenditures. We analyzed results using multivariable regressions with post hoc weighting by age and sex, and conditional logistic regressions for the association of each symptom and EQ-5D limitation on cases and controls. RESULTS: Of 548 cases (mean age 41.1 years; 61.5% female), 16.8% reported physical symptoms at month 6 (most frequently extreme tiredness, headache, loss of taste and/or smell, and shortness of breath). Cases reported more limitations with doing usual activities than controls. Almost half of cases spent a mean of £18.1 on nonprescription drugs (median: £10.0), and 52.7% missed work or school for a mean of 12 days (median: 10). On average, all cases lost 13.7 (95% confidence interval [CI]: 9.7, 17.7) QALDs, whereas those reporting symptoms at month 6 lost 32.9 (95% CI: 24.5, 37.6) QALDs. Losses also increased with older age. Cumulatively, the health loss from morbidity contributes at least 18% of the total COVID-19-related disease burden in the England. CONCLUSIONS: One in 6 cases report ongoing symptoms at 6 months, and 10% report prolonged loss of function compared to pre-COVID-19 baselines. A marked health burden was observed among older COVID-19 cases and those with persistent physical symptoms.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Cross-Sectional Studies , Female , Humans , Male , Prospective Studies , Quality of Life
6.
Res Pract Thromb Haemost ; 6(3): e12698, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1797756

ABSTRACT

Background: Several studies have found increased risks of thrombosis with thrombocytopenia syndrome (TTS) following the ChAdOx1 vaccination. However, case ascertainment is often incomplete in large electronic health record (EHR)-based studies. Objectives: To assess for an association between clinically validated TTS and COVID-19 vaccination. Methods: We used the self-controlled case series method to assess the risks of clinically validated acute TTS after a first COVID-19 vaccine dose (BNT162b2 or ChAdOx1) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Case ascertainment was performed uninformed of vaccination status via a retrospective clinical review of hospital EHR systems, including active ascertainment of thrombocytopenia. Results: One hundred seventy individuals were admitted to the hospital for a TTS event at the study sites between January 1 and March 31, 2021. A significant increased risk (relative incidence [RI], 5.67; 95% confidence interval [CI], 1.02-31.38) of TTS 4 to 27 days after ChAdOx1 was observed in the youngest age group (18- to 39-year-olds). No other period had a significant increase, although for ChAdOx1 for all ages combined the RI was >1 in the 4- to 27- and 28- to 41-day periods (RI, 1.52; 95% CI, 0.88-2.63; and (RI, 1.70; 95% CI, 0.73-3.8, respectively). There was no significant increased risk of TTS after BNT162b2 in any period. Increased risks of TTS following a positive SARS-CoV-2 test occurred across all age groups and exposure periods. Conclusions: We demonstrate an increased risk of TTS in the 4 to 27 days following COVID-19 vaccination, particularly for ChAdOx1. These risks were lower than following SARS-CoV-2 infection. An alternative vaccine may be preferable in younger age groups in whom the risk of postvaccine TTS is greatest.

7.
J Infect ; 84(5): 675-683, 2022 05.
Article in English | MEDLINE | ID: covidwho-1788130

ABSTRACT

Background COVID-19 vaccines approved in the UK are highly effective in general population cohorts, however, data on effectiveness amongst individuals with clinical conditions that place them at increased risk of severe disease are limited. Methods We used GP electronic health record data, sentinel virology swabbing and antibody testing within a cohort of 712 general practices across England to estimate vaccine antibody response and vaccine effectiveness against medically attended COVID-19 amongst individuals in clinical risk groups using cohort and test-negative case control designs. Findings There was no reduction in S-antibody positivity in most clinical risk groups, however reduced S-antibody positivity and response was significant in the immunosuppressed group. Reduced vaccine effectiveness against clinical disease was also noted in the immunosuppressed group; after a second dose, effectiveness was moderate (Pfizer: 59.6%, 95%CI 18.0-80.1%; AstraZeneca 60.0%, 95%CI -63.6-90.2%). Interpretation In most clinical risk groups, immune response to primary vaccination was maintained and high levels of vaccine effectiveness were seen. Reduced antibody response and vaccine effectiveness were seen after 1 dose of vaccine amongst a broad immunosuppressed group, and second dose vaccine effectiveness was moderate. These findings support maximising coverage in immunosuppressed individuals and the policy of prioritisation of this group for third doses.


Subject(s)
COVID-19 Vaccines , COVID-19 , BNT162 Vaccine , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Humans , Immunity , SARS-CoV-2 , Vaccine Efficacy
8.
J Infect ; 84(6): 814-824, 2022 06.
Article in English | MEDLINE | ID: covidwho-1778314

ABSTRACT

OBJECTIVES: To monitor changes in seroprevalence of SARS-CoV-2 antibodies in populations over time and between different demographic groups. METHODS: A subset of practices in the Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) sentinel network provided serum samples, collected when volunteer patients had routine blood tests. We tested these samples for SARS-CoV-2 antibodies using Abbott (Chicago, USA), Roche (Basel, Switzerland) and/or Euroimmun (Luebeck, Germany) assays, and linked the results to the patients' primary care computerised medical records. We report seropositivity by region and age group, and additionally examined the effects of gender, ethnicity, deprivation, rurality, shielding recommendation and smoking status. RESULTS: We estimated seropositivity from patients aged 18-100 years old, which ranged from 4.1% (95% CI 3.1-5.3%) to 8.9% (95% CI 7.8-10.2%) across the different assays and time periods. We found higher Euroimmun seropositivity in younger age groups, people of Black and Asian ethnicity (compared to white), major conurbations, and non-smokers. We did not observe any significant effect by region, gender, deprivation, or shielding recommendation. CONCLUSIONS: Our results suggest that prior to the vaccination programme, most of the population remained unexposed to SARS-CoV-2.


Subject(s)
COVID-19 , General Practitioners , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral , COVID-19/epidemiology , England/epidemiology , Humans , Middle Aged , Primary Health Care , SARS-CoV-2 , Seroepidemiologic Studies , Young Adult
9.
Immun Ageing ; 18(1): 34, 2021 Aug 20.
Article in English | MEDLINE | ID: covidwho-1759763

ABSTRACT

BACKGROUND: Several SARS-CoV-2 vaccines have shown clinical efficacy against Covid-19 infection but there remains uncertainty about the immune responses elicited by different regimens. This is a particularly important question for older people who are at increased clinical risk following infection and in whom immune senescence may limit vaccine responses. The BNT162b2 mRNA and ChAdOx1 adenovirus vaccines were the first two vaccines deployed in the UK programme using an 8-12 week 'extended interval'. OBJECTIVES: We undertook analysis of the spike-specific antibody and cellular immune response in 131 participants aged 80+ years after the second dose of 'extended interval' dual vaccination with either BNT162b2 mRNA (n = 54) or ChAdOx1 (n = 77) adenovirus vaccine. Blood samples were taken 2-3 weeks after second vaccine and were paired with samples taken at 5-weeks after first vaccine which have been reported previously. Antibody responses were measured using the Elecsys® electrochemiluminescence immunoassay assay and cellular responses were assessed by IFN-γ ELISpot. RESULTS: Antibody responses against spike protein became detectable in all donors following dual vaccination with either vaccine. 4 donors had evidence of previous natural infection which is known to boost vaccine responses. Within the 53 infection-naïve donors the median antibody titre was 4030 U/ml (IQR 1892-8530) following BNT162b2 dual vaccination and 1405 (IQR 469.5-2543) in the 74 patients after the ChAdOx1 vaccine (p = < 0.0001). Spike-specific T cell responses were observed in 30% and 49% of mRNA and ChAdOx1 recipients respectively and median responses were 1.4-times higher in ChAdOx1 vaccinees at 14 vs 20 spots/million respectively (p = 0.022). CONCLUSION: Dual vaccination with BNT162b2 or ChAdOx1 induces strong humoral immunity in older people following an extended interval protocol. Antibody responses are 2.9-times higher following the mRNA regimen whilst cellular responses are 1.4-times higher with the adenovirus-based vaccine. Differential patterns of immunogenicity are therefore elicited from the two vaccine platforms. It will be of interest to assess the relative stability of immune responses after these homologous vaccine regimens in order to assess the potential need for vaccine boosting. Furthermore, these findings indicate that heterologous vaccine platforms may offer the opportunity to further optimize vaccine responses.

10.
N Engl J Med ; 386(16): 1532-1546, 2022 04 21.
Article in English | MEDLINE | ID: covidwho-1730372

ABSTRACT

BACKGROUND: A rapid increase in coronavirus disease 2019 (Covid-19) cases due to the omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 in highly vaccinated populations has aroused concerns about the effectiveness of current vaccines. METHODS: We used a test-negative case-control design to estimate vaccine effectiveness against symptomatic disease caused by the omicron and delta (B.1.617.2) variants in England. Vaccine effectiveness was calculated after primary immunization with two doses of BNT162b2 (Pfizer-BioNTech), ChAdOx1 nCoV-19 (AstraZeneca), or mRNA-1273 (Moderna) vaccine and after a booster dose of BNT162b2, ChAdOx1 nCoV-19, or mRNA-1273. RESULTS: Between November 27, 2021, and January 12, 2022, a total of 886,774 eligible persons infected with the omicron variant, 204,154 eligible persons infected with the delta variant, and 1,572,621 eligible test-negative controls were identified. At all time points investigated and for all combinations of primary course and booster vaccines, vaccine effectiveness against symptomatic disease was higher for the delta variant than for the omicron variant. No effect against the omicron variant was noted from 20 weeks after two ChAdOx1 nCoV-19 doses, whereas vaccine effectiveness after two BNT162b2 doses was 65.5% (95% confidence interval [CI], 63.9 to 67.0) at 2 to 4 weeks, dropping to 8.8% (95% CI, 7.0 to 10.5) at 25 or more weeks. Among ChAdOx1 nCoV-19 primary course recipients, vaccine effectiveness increased to 62.4% (95% CI, 61.8 to 63.0) at 2 to 4 weeks after a BNT162b2 booster before decreasing to 39.6% (95% CI, 38.0 to 41.1) at 10 or more weeks. Among BNT162b2 primary course recipients, vaccine effectiveness increased to 67.2% (95% CI, 66.5 to 67.8) at 2 to 4 weeks after a BNT162b2 booster before declining to 45.7% (95% CI, 44.7 to 46.7) at 10 or more weeks. Vaccine effectiveness after a ChAdOx1 nCoV-19 primary course increased to 70.1% (95% CI, 69.5 to 70.7) at 2 to 4 weeks after an mRNA-1273 booster and decreased to 60.9% (95% CI, 59.7 to 62.1) at 5 to 9 weeks. After a BNT162b2 primary course, the mRNA-1273 booster increased vaccine effectiveness to 73.9% (95% CI, 73.1 to 74.6) at 2 to 4 weeks; vaccine effectiveness fell to 64.4% (95% CI, 62.6 to 66.1) at 5 to 9 weeks. CONCLUSIONS: Primary immunization with two doses of ChAdOx1 nCoV-19 or BNT162b2 vaccine provided limited protection against symptomatic disease caused by the omicron variant. A BNT162b2 or mRNA-1273 booster after either the ChAdOx1 nCoV-19 or BNT162b2 primary course substantially increased protection, but that protection waned over time. (Funded by the U.K. Health Security Agency.).


Subject(s)
COVID-19 Vaccines , COVID-19 , /therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Case-Control Studies , Humans , Immunization, Secondary/adverse effects , SARS-CoV-2/genetics
11.
EClinicalMedicine ; 45: 101319, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1704577

ABSTRACT

BACKGROUND: The role of educational settings in SARS-CoV-2 infection and transmission remains controversial. We investigated SARS-CoV-2 infection, seroprevalence, and seroconversion rates in secondary schools during the 2020/21 academic year, which included the emergence of the more transmissible alpha and delta variants, in England. METHODS: The UK Health Security Agency (UKHSA) initiated prospective surveillance in 18 urban English secondary schools. Participants had nasal swabs for SARS-CoV-2 RT-PCR and blood sampling for SARS-CoV-2 nucleoprotein and spike protein antibodies at the start (Round 1: September-October 2020) and end (Round 2: December 2020) of the autumn term, when schools reopened after national lockdown was imposed in January 2021 (Round 3: March-April 2021), and end of the academic year (Round 4: May-July 2021). FINDINGS: We enrolled 2314 participants (1277 students, 1037 staff; one participant had missing data for PCR testing). In-school testing identified 31 PCR-positive participants (20 students, 11 staff). Another 247 confirmed cases (112 students, 135 staff) were identified after linkage with national surveillance data, giving an overall positivity rate of 12.0% (278/2313; staff: 14.1%, 146/1037 vs students: 10.3%, 132/1276; p = 0.006). Trends were similar to national infection data. Nucleoprotein-antibody seroprevalence increased for students and staff between Rounds 1 and 3 but were similar between Rounds 3 and 4, when the delta variant was the dominant circulating strain. Overall, Nucleoprotein-antibody seroconversion was 18.4% (137/744) in staff and 18.8% (146/778) in students, while Spike-antibody seroconversion was higher in staff (72.8%, 525/721) than students (21.3%, 163/764) because of vaccination. INTERPRETATION: SARS-CoV-2 infection rates in secondary schools remained low when community infection rates were low, even as the delta variant was emerging in England. FUNDING: This study was funded by the UK Department of Health and Social Care.

12.
Microbiol Spectr ; 10(1): e0228921, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1702730

ABSTRACT

In March 2020, the Rare and Imported Pathogens Laboratory at the UK Health Security Agency (UKHSA) (formerly Public Health England [PHE]) Porton Down, was tasked by the Department of Health and Social Care with setting up a national surveillance laboratory facility to study SARS-CoV-2 antibody responses and population-level sero-surveillance in response to the growing SARS-CoV-2 outbreak. In the following 12 months, the laboratory tested more than 160,000 samples, facilitating a wide range of research and informing UKHSA, DHSC, and UK government policy. Here we describe the implementation and use of the Euroimmun anti-SARS-CoV-2 IgG assay and provide an extended evaluation of its performance. We present a markedly improved overall sensitivity of 91.39% (≥14 days 92.74%, ≥21 days 93.59%) compared to our small-scale early study, and a specificity of 98.56%. In addition, we detail extended characteristics of the Euroimmun assay: intra- and interassay precision, correlation to neutralization, and assay linearity. IMPORTANCE Serology assays have been useful in determining those with previous SARS-CoV-2 infection in a wide range of research and serosurveillance projects. However, assays vary in their sensitivity at detecting SARS-CoV-2 antibodies. Here, we detail an extended evaluation and characterization of the Euroimmun anti-SARS-CoV-2 IgG assay, one that has been widely used within the United Kingdom on over 160,000 samples to date.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/blood , Immunoglobulin G/blood , SARS-CoV-2/immunology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Humans , Public Health , Reagent Kits, Diagnostic , SARS-CoV-2/genetics , Sensitivity and Specificity , United Kingdom/epidemiology
13.
BMC Public Health ; 22(1): 405, 2022 02 28.
Article in English | MEDLINE | ID: covidwho-1700444

ABSTRACT

BACKGROUND: In March 2020, England went into its first lockdown in response to the COVID-19 pandemic. Restrictions eased temporarily, followed by second and third waves in October 2020 and January 2021. Recent data showed that the COVID-19 pandemic resulted in reduced transmission of some invasive diseases. We assess the impact of the COVID-19 pandemic on pertussis incidence and on the immunisation programme in England. METHODS: We assessed trends in pertussis cases from 2012 to 2020 by age group and month. Incidence from the time that England eased its initial lockdown measures in July 2020 through to summer 2021 was calculated and the incidence rate ratios of pertussis cases from five years prior to the pandemic (July 2014 - June 2019) compared to the same time period during the pandemic (July 2020 - June 2021). Vaccine coverage estimates for pertussis containing vaccines were reviewed for the maternal and childhood programmes. RESULTS: A substantial decline in pertussis cases was observed from April 2020 onwards, marking the lowest number of cases in the last decade. Pertussis incidence dropped in all age groups, particularly among infants less than one year old (0.50 / 100,000 during July 2020 to June 2021 compared to 24.49/ 100,000 from July 2014 to June 2019). The incidence rate ratio was 0.02 (95% CI 0.01 to 0.02) for July 2014 to June 2019 (pre-pandemic) compared to the pandemic period of July 2020 to June 2021. None of the cases had a co-infection with SARS-CoV-2. Vaccine coverage for infants born between January to March 2020 with three doses of pertussis vaccine by 12 months of age decreased by 1.1% points compared to infants born between January to March 2019 (91.6% and 92.7%, respectively). Prenatal pertussis coverage for the 2020 to 2021 financial year was 2.7% points lower than the year prior to the pandemic (70.5% and 76.8%, respectively). CONCLUSIONS: Lockdown measures due to the COVID-19 pandemic have had a significant impact on pertussis transmission. With the easing of restrictions it is important to continue monitoring pertussis cases in England alongside coverage of the maternal and childhood immunisation programmes.


Subject(s)
COVID-19 , Whooping Cough , Bordetella pertussis , COVID-19/epidemiology , COVID-19/prevention & control , Child , Communicable Disease Control , England/epidemiology , Female , Humans , Infant , Pandemics/prevention & control , Pertussis Vaccine , Pregnancy , SARS-CoV-2 , Whooping Cough/epidemiology , Whooping Cough/prevention & control
15.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327750

ABSTRACT

In contrast to the increasing levels of high avidity S antibody measured by the Roche assay in the first 6 months following natural infection, marked waning is seen post 2 or 3 doses of vaccine. Although the kinetics differ between those with vaccine-induced immunity compared to those infected prior to vaccination (hybrid immunity), waning rates appear to be similar following 2 or 3 doses of vaccine. These data should allow countries to optimise the timing of future doses of vaccine.

16.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-323955

ABSTRACT

The COVID-19 vaccination programme commenced in the UK on 8th December 2020 primarily based on age;by 24 February 2021 approximately 93% of the English population aged 70-79 years had received at least 1 dose of either the Pfizer BioNTech or AstraZeneca vaccines. Using a nucleoprotein assay that detects antibodies following natural infection only and a spike assay that detects both infection and vaccine-induced responses, we aim to describe the impact of vaccination on SARS-CoV-2 antibody prevalence in English blood donors.

17.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-323841

ABSTRACT

Background: The COVID-19 pandemic in the UK began in late January 2020 and peaked in mid-April before declining. Children typically develop only very mild symptoms and it remains unclear what role children play in the spread of COVID-19. The aim of this study was to report the prevalence of SARS-CoV-2 antibodies in healthy children of healthcare workers. Methods: Healthy children of healthcare workers, were recruited in London during May 2020. Participants had nose and throat swabs tested for SARS-CoV-2 infection via RT-qPCR and blood serums samples for SARS-CoV-2 immunoglobulin G (IgG) antibodies. Findings: A total of 215 children from 126 families took part and 25(12%) were seropositive for SARS-CoV-2. Children of clinical healthcare workers were significantly more likely to be seropositive 23/133(17%) than those of non-clinical healthcare workers 2/83(2%);p=0.001.In children of parents with confirmed COVID-19, seropositivity was 19/47(40%) compared to 3/44(7%) in children of parents with suspected COVID-19 and 3/124(2%) in children of asymptomatic parents (p<0.001). Overall, 15/83(18%) of symptomatic children were seropositive compared to 10/132(8%) of asymptomatic children (p=0.02). The most commonly reported symptoms were fever 7/25(28%), headache 4/25(16%) and lethargy 5/25(20%). None of the children were hospitalised with COVID-19. Interpretation: The secondary attack rate in children of healthcare workers with confirmed COVID-19 was 40% compared to 2% of children in families with no reported symptoms. One in three seropositive children were asymptomatic.Trial Registration: NCT0434740Funding Statement: This study was funded by the Public Health Agency [COM/5596/20].Declaration of Interests: None disclosed.Ethics Approval Statement: The London (Chelsea) research ethics committee reviewed the study protocol and provided a favourable outcome (Project ID 282617, OREC ID 20/HRA/1731).

18.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-323456

ABSTRACT

Background: In England, the reopening of universities in September 2020 coincided with a rapid increase in SARS-CoV-2 infection rates in university aged young adults. This study aimed to estimate SARS-CoV-2 antibody prevalence in students attending universities that had experienced a COVID-19 outbreak after reopening for the autumn term in September 2020.Methods: A cross-sectional serosurvey was conducted during 02-11 December 2020 in students aged ≤ 25 years across five universities in England. Blood samples for SARS-CoV-2 antibody testing were obtained using a self-sampling kit and analysed using the Abbott SARS-CoV-2 N antibody and/or an in-house receptor binding domain (RBD) assay. Findings: SARS-CoV-2 seroprevalence in 2,905 university students was 17.8% (95%CI, 16.5-19.3), ranging between 7.6%-29.7% across the five universities. Seropositivity was associated with being younger likely to represent first year undergraduates (aOR 3.2, 95% CI 2.0-4.9), living in halls of residence (aOR 2.1, 95% CI 1.7-2.7) and sharing a kitchen with an increasing number of students (shared with 4-7 individuals, aOR 1.43, 95%CI 1.12-1.82;shared with 8 or more individuals, aOR 1.53, 95% CI 1.04-2.24). Seropositivity was 49% in students living in halls of residence that reported high SARS-CoV-2 infection rates (>8%) during the autumn term.Interpretation: Despite large numbers of cases and outbreaks in universities, less than one in five students (17.8%) overall had SARS-CoV-2 antibodies at the end of the autumn term in England. In university halls of residence affected by a COVID-19 outbreak, however, nearly half the resident students became infected and developed SARS-CoV-2 antibodies.

19.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-322165

ABSTRACT

Following the UK’s approach to extend the COVID vaccination interval from 3-4 weeks to 12 weeks, there was considerable international debate about the optimal approach for vaccine deployment in countries experiencing surges in cases and pressures on health service utilisation.We found that adults aged ≥70 years mount robust antibody responses after a single dose of the Pfizer BioNtech vaccine, with significantly higher antibody concentrations in previously-infected vaccinees. Two doses of Pfizer BioNtech vaccine produced very high S-antibody levels across all age-groups, with significantly higher antibodies in those with prior SARS-CoV-2 infection. Antibody levels were significantly higher after two doses of vaccine in those aged 70 years and above when compared with convalescent sera from clinically mild to moderate PCR confirmed cases. Our findings provide additional support for the UK approach of prioritising the first dose of vaccine.

20.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-318753

ABSTRACT

Background: Age is the major risk factor for mortality after SARS-CoV-2 infection and older people have received priority consideration for COVID-19 vaccination. However vaccine responses are often suboptimal in this age group and few people over the age of 80 years were included in vaccine registration trials.Methods: We determined the serological and cellular response to spike protein in 100 people aged 80-96 years at 2 weeks after second vaccination with the Pfizer BNT162b2 mRNA vaccine.Findings: Antibody responses were seen in every donor with high titres in 98%. Spike-specific cellular immune responses were detectable in only 63% and correlated with humoral response. Previous SARS-CoV-2 infection substantially increased antibody responses after one vaccine and antibody and cellular responses remained 28-fold and 3-fold higher respectively after dual vaccination. Post-vaccine sera mediated strong neutralisation of live Victoria (Wuhan-like prototype) infection and although neutralisation titres were reduced 14-fold against the P.1 variant first discovered in Brazil they remained largely effective.Interpretation: These data demonstrate that the mRNA vaccine platform delivers strong humoral immunity in people up to 96 years of age and retains broad efficacy against the P.1 Variant of Concern.Funding: This work was supported by the UK Coronavirus Immunology Consortium (UK-CIC) funded by DHSC/UKRI and the National Core Studies Immunity programme. Declaration of Interest: None to declare. Ethical Approval: The work was performed under the CIA UPH IRAS approval (REC 20W\0240) and conducted according to the Declaration of Helsinki and good clinical practice.

SELECTION OF CITATIONS
SEARCH DETAIL