Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Clinical aspect
Year range
ACS Omega ; 6(50): 34945-34953, 2021 Dec 21.
Article in English | MEDLINE | ID: covidwho-1586043


Numerous reverse transcription polymerase chain reaction (RT-PCR) tests have emerged over the past year as the gold standard for detecting millions of cases of SARS-CoV-2 reported daily worldwide. However, problems with critical shortages of key reagents such as PCR primers and RNA extraction kits and unpredictable test reliability related to high viral replication cycles have triggered the need for alternative methodologies to PCR to detect specific COVID-19 proteins. Several authors have developed methods based on liquid chromatography with tandem mass spectrometry (LC-MS/MS) to confirm the potential of the technique to detect two major proteins, the spike and the nucleoprotein, of COVID-19. In the present work, an S-Trap mini spin column digestion protocol was used for sample preparation prodromal to LC-MS/MS analysis in multiple reactions monitoring ion mode (MRM) to obtain a comprehensive method capable of detecting different viral proteins. The developed method was applied to n. 81 oro/nasopharyngeal swabs submitted in parallel to quantitative reverse transcription PCR (RT-qPCR) assays to detect RdRP, the S and N genes specific for COVID-19, and the E gene for all Sarbecoviruses, including SARS-CoV-2 (with cycle negativity threshold set to 40). A total of 23 peptides representative of the six specific viral proteins were detected in the monitoring of 128 transitions found to have good ionic currents extracted in clinical samples that reacted differently to the PCR assay. The best instrumental response came from the FLPFQFGR sequence of spike [558-566] peptide used to test the analytical performance of the method that has good sensitivity with a low false-negative rate. Transition monitoring using a targeted MS approach has the great potential to detect the fragmentation reactions of any peptide molecularly defined by a specific amino acid sequence, offering the extensibility of the approach to any viral sequence including derived variants and thus providing insights into the development of new types of clinical diagnostics.

Sci Rep ; 11(1): 21725, 2021 11 05.
Article in English | MEDLINE | ID: covidwho-1504567


SARS-CoV-2 enters the intestine by the spike protein binding to angiotensin-converting enzyme 2 (ACE2) receptors in enterocyte apical membranes, leading to diarrhea in some patients. Early treatment of COVID-19-associated diarrhea could relieve symptoms and limit viral spread within the gastrointestinal (GI) tract. Diosmectite, an aluminomagnesium silicate adsorbent clay with antidiarrheal effects, is recommended in some COVID-19 management protocols. In rotavirus models, diosmectite prevents pathogenic effects by binding the virus and its enterotoxin. We tested the trapping and anti-inflammatory properties of diosmectite in a SARS-CoV-2 model. Trapping effects were tested in Caco-2 cells using spike protein receptor-binding domain (RBD) and heat-inactivated SARS-CoV-2 preparations. Trapping was assessed by immunofluorescence, alone or in the presence of cells. The effect of diosmectite on nuclear factor kappa B (NF-kappaB) activation and CXCL10 secretion induced by the spike protein RBD and heat-inactivated SARS-CoV-2 were analyzed by Western blot and ELISA, respectively. Diosmectite bound the spike protein RBD and SARS-CoV-2 preparation, and inhibited interaction of the spike protein RBD with ACE2 receptors on the Caco-2 cell surface. Diosmectite exposure also inhibited NF-kappaB activation and CXCL10 secretion. These data provide direct evidence that diosmectite can bind SARS-CoV-2 components and inhibit downstream inflammation, supporting a mechanistic rationale for consideration of diosmectite as a management option for COVID-19-associated diarrhea.

COVID-19/drug therapy , Chemokine CXCL10/metabolism , NF-kappa B p50 Subunit/metabolism , SARS-CoV-2 , Silicates/chemistry , Adsorption , Aluminum Compounds/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Anti-Inflammatory Agents , Binding Sites , Caco-2 Cells , Chromatography, Liquid , Clay , Diarrhea/etiology , Diarrhea/therapy , Enterocytes/metabolism , Gastroenterology , Humans , Magnesium Compounds/chemistry , Mass Spectrometry , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding/drug effects , Protein Domains , Rotavirus , Silicates/metabolism