Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Viruses ; 15(5)2023 04 29.
Article in English | MEDLINE | ID: covidwho-20232812

ABSTRACT

The rapid mutation and spread of SARS-CoV-2 variants recently, especially through the emerging variants Omicron BA5, BF7, XBB and BQ1, necessitate the development of universal vaccines to provide broad spectrum protection against variants. For the SARS-CoV-2 universal recombinant protein vaccines, an effective approach is necessary to design broad-spectrum antigens and combine them with novel adjuvants that can induce high immunogenicity. In this study, we designed a novel targeted retinoic acid-inducible gene-I (RIG-I) receptor 5'triphosphate double strain RNA (5'PPP dsRNA)-based vaccine adjuvant (named AT149) and combined it with the SARS-CoV-2 Delta and Omicron chimeric RBD-dimer recombinant protein (D-O RBD) to immunize mice. The results showed that AT149 activated the P65 NF-κB signaling pathway, which subsequently activated the interferon signal pathway by targeting the RIG-I receptor. The D-O RBD + AT149 and D-O RBD + aluminum hydroxide adjuvant (Al) + AT149 groups showed elevated levels of neutralizing antibodies against the authentic Delta variant, and Omicron subvariants, BA1, BA5, and BF7, pseudovirus BQ1.1, and XBB compared with D-O RBD + Al and D-O RBD + Al + CpG7909/Poly (I:C) groups at 14 d after the second immunization, respectively. In addition, D-O RBD + AT149 and D-O RBD + Al + AT149 groups presented higher levels of the T-cell-secreted IFN-γ immune response. Overall, we designed a novel targeted RIG-I receptor 5'PPP dsRNA-based vaccine adjuvant to significantly improve the immunogenicity and broad spectrum of the SARS-CoV-2 recombinant protein vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Mice , Adjuvants, Vaccine , SARS-CoV-2/genetics , COVID-19/prevention & control , Adjuvants, Immunologic , ABO Blood-Group System , Antibodies, Neutralizing , Recombinant Proteins/genetics , Antibodies, Viral , Spike Glycoprotein, Coronavirus
2.
Viruses ; 15(1)2022 Dec 24.
Article in English | MEDLINE | ID: covidwho-2241292

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein subunit vaccine is one of the mainstream technology platforms for the development of COVID-19 vaccines, and most R&D units use the receptor-binding domain (RBD) or spike (S) protein as the main target antigen. The complexity of vaccine design, sequence, and expression systems makes it urgent to establish common antigen assays to facilitate vaccine development. In this study, we report the development of a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) to determine the antigen content of SARS-CoV-2 protein subunit vaccines based on the United States Pharmacopeia <1220> and ICH (international conference on harmonization) Q14 and Q2 (R2) requirements. A monoclonal antibody (mAb), 20D8, was identified as the detection antibody based on its high RBD binding activity (EC50 = 8.4 ng/mL), broad-spectrum anti-variant neutralizing activity (EC50: 2.7−9.8 ng/mL for pseudovirus and EC50: 9.6−127 ng/mL for authentic virus), good in vivo protection, and a recognized linear RBD epitope (369−379 aa). A porcine anti-RBD polyclonal antibody was selected as the coating antibody. Assay performance met the requirements of the analytical target profile with an accuracy and precision of ≥90% and adequate specificity. Within the specification range of 70−143%, the method capability index was >0.96; the misjudgment probability was <0.39%. The method successfully detected SARS-CoV-2 protein subunit vaccine antigens (RBD or S protein sequences in Alpha, Beta, Gamma, or Delta variants) obtained from five different manufacturers. Thus, we present a new robust, reliable, and general method for measuring the antigenic content of SARS-CoV-2 protein subunit vaccines. In addition to currently marketed and emergency vaccines, it is suitable for vaccines in development containing antigens derived from pre-Omicron mutant strains.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccines, Subunit , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Enzyme-Linked Immunosorbent Assay , Protein Subunits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
Emerg Microbes Infect ; : 1-11, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2232612

ABSTRACT

Over one billion people have received 2-3 dosages of an inactivated COVID-19 vaccine for basic immunization. Whether a booster dose should be delivered to protect against the Omicron variant and its sub-lineages, remains controversial. Here, we tested different vaccine platforms targeting the ancestral or Omicron strain as a secondary booster of the ancestral inactivated vaccine in mice. We found that the Omicron-adapted inactivated viral vaccine promoted a neutralizing antibody response against Omicron in mice. Furthermore, heterologous immunization with COVID-19 vaccines based on different platforms remarkably elevated the levels of cross- neutralizing antibody against Omicron and its sub-lineages. Omicron-adapted vaccines based on heterologous platforms should be prioritized in future vaccination strategies to control COVID-19.

4.
MedComm ; 3(4), 2022.
Article in English | EuropePMC | ID: covidwho-2147815

ABSTRACT

Integrating different types of vaccines into a singular immunization regimen is an effective and accessible approach to strengthen and broaden the immunogenicity of existing coronavirus disease 2019 (COVID‐19) vaccine candidates. To optimize the immunization strategy of the novel mRNA‐based vaccine and recombinant protein subunit vaccine that attracted much attention in COVID‐19 vaccine development, we evaluated the immunogenicity of different combined regimens with the mRNA vaccine (RNA‐RBD) and protein subunit vaccine (PS‐RBD) in mice. Compared with homologous immunization of RNA‐RBD or PS‐RBD, heterologous prime‐boost strategies for mRNA and protein subunit vaccines failed to simultaneously enhance neutralizing antibody (NAb) and Th1 cellular response in this study, showing modestly higher serum neutralizing activity and antibody‐dependent cell‐mediated cytotoxicity for “PS‐RBD prime, RNA‐RBD boost” and robust Th1 type cellular response for “RNA‐RBD prime, PS‐RBD boost”. Interestingly, immunizing the mice with the mixed formulation of the two aforementioned vaccines in various proportions further significantly enhanced the NAb responses against ancestral, Delta, and Omicron strains and manifested increased Th1‐type responses, suggesting that a mixed formulation of mRNA and protein vaccines might be a more prospective vaccination strategy. This study provides basic research data on the combined vaccination strategies of mRNA and protein‐based COVID‐19 vaccines. The immunogenicity of vaccines can be enhanced by the optimization of immunization strategies. In this paper, we investigated the immunogenicity of different combined regimens with the mRNA vaccine RNA‐RBD and protein subunit vaccine PS‐RBD. The result showed that compared with homologous immunization, heterologous prime‐boost strategies for mRNA and protein subunit vaccines failed to simultaneously enhance NAb and Th1 cellular response, but immunizing the mice with the mixed formulation of the two aforementioned vaccines in various proportions further significantly enhanced the NAb responses and Th1 cellular response.

5.
Viruses ; 14(11)2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2143699

ABSTRACT

Small molecular nucleic acid drugs produce antiviral effects by activating pattern recognition receptors (PRRs). In this study, a small molecular nucleotide containing 5'triphosphoric acid (5'PPP) and possessing a double-stranded structure was designed and named nCoV-L. nCoV-L was found to specifically activate RIG-I, induce interferon responses, and inhibit duplication of four RNA viruses (Human enterovirus 71, Human poliovirus 1, Human coxsackievirus B5 and Influenza A virus) in cells. In vivo, nCoV-L quickly induced interferon responses and protected BALB/c suckling mice from a lethal dose of the enterovirus 71. Additionally, prophylactic administration of nCoV-L was found to reduce mouse death and relieve morbidity symptoms in a K18-hACE2 mouse lethal model of SARS-CoV-2. In summary, these findings indicate that nCoV-L activates RIG-I and quickly induces effective antiviral signals. Thus, it has potential as a broad-spectrum antiviral drug.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mice , Animals , DEAD-box RNA Helicases/genetics , RNA, Viral/genetics , Cell Line , DEAD Box Protein 58 , Mice, Inbred BALB C , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Interferons
6.
Front Immunol ; 13: 949248, 2022.
Article in English | MEDLINE | ID: covidwho-2022731

ABSTRACT

To cope with the decline in COVID-19 vaccine-induced immunity caused by emerging SARS-CoV-2 variants, a heterologous immunization regimen using chimpanzee adenovirus vectored vaccine expressing SARS-CoV-2 spike (ChAd-S) and an inactivated vaccine (IV) was tested in mice and non-human primates (NHPs). Heterologous regimen successfully enhanced or at least maintained antibody and T cell responses and effectively protected against SARS-CoV-2 variants in mice and NHPs. An additional heterologous booster in mice further improved and prolonged the spike-specific antibody response and conferred effective neutralizing activity against the Omicron variant. Interestingly, priming with ChAd-S and boosting with IV reduced the lung injury risk caused by T cell over activation in NHPs compared to homologous ChAd-S regimen, meanwhile maintained the flexibility of antibody regulation system to react to virus invasion by upregulating or preserving antibody levels. This study demonstrated the satisfactory compatibility of ChAd-S and IV in prime-boost vaccination in animal models.


Subject(s)
Adenoviruses, Simian , COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunization , Macaca , Mice , SARS-CoV-2 , Vaccination , Vaccines, Inactivated
7.
Microbiol Spectr ; 10(5): e0226322, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2019798

ABSTRACT

We investigated the distribution, virulence, and pathogenic characteristics of mutated SARS-CoV-2 to clarify the association between virulence and the viral spreading ability of current and future circulating strains. Chinese rhesus macaques were infected with ancestral SARS-CoV-2 strain GD108 and Beta variant B.1.351 (B.1.351) and assessed for clinical signs, viral distribution, pathological changes, and pulmonary inflammation. We found that GD108 replicated more efficiently in the upper respiratory tract, whereas B.1.351 replicated more efficiently in the lower respiratory tract and lung tissue, implying a reduced viral shedding and spreading ability of B.1.351 compared with that of GD108. Importantly, B.1.351 caused more severe lung injury and dramatically elevated the level of inflammatory cytokines compared with those observed after infection with GD108. Moreover, both B.1.351 and GD108 induced spike-specific T-cell responses at an early stage of infection, with higher levels of interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) in the B.1.351 group and higher levels of interleukin 17 (IL-17) in the GD108 group, indicating a divergent pattern in the T-cell-mediated inflammatory "cytokine storm." This study provides a basis for exploring the pathogenesis of SARS-CoV-2 variants of concern (VOCs) and establishes an applicable animal model for evaluating the efficacy and safety of vaccines and drugs. IMPORTANCE One of the priorities of the current SARS-CoV-2 vaccine and drug research strategy is to determine the changes in transmission ability, virulence, and pathogenic characteristics of SARS-CoV-2 variants. In addition, nonhuman primates (NHPs) are suitable animal models for the study of the pathogenic characteristics of SARS-CoV-2 and could contribute to the understanding of pathogenicity and transmission mechanisms. As SARS-CoV-2 variants continually emerge and the viral biological characteristics change frequently, the establishment of NHP infection models for different VOCs is urgently needed. In the study, the virulence and tissue distribution of B.1.351 and GD108 were comprehensively studied in NHPs. We concluded that the B.1.351 strain was more virulent but exhibited less viral shedding than the latter. This study provides a basis for determining the pathogenic characteristics of SARS-CoV-2 and establishes an applicable animal model for evaluating the efficacy and safety of vaccines and drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Interleukin-17 , Virus Shedding , Virulence , COVID-19 Vaccines , Tumor Necrosis Factor-alpha , Macaca mulatta , Interferon-gamma , Disease Models, Animal
8.
Viruses ; 14(9)2022 08 24.
Article in English | MEDLINE | ID: covidwho-1997806

ABSTRACT

The research and development (R&D) of novel adjuvants is an effective measure for improving the immunogenicity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recombinant protein vaccine. Toward this end, we designed a novel single-stranded RNA-based adjuvant, L2, from the SARS-CoV-2 prototype genome. L2 could initiate retinoic acid-inducible gene-I signaling pathways to effectively activate the innate immunity. ZF2001, an aluminum hydroxide (Al) adjuvanted SARS-CoV-2 recombinant receptor binding domain (RBD) subunit vaccine with emergency use authorization in China, was used for comparison. L2, with adjuvant compatibility with RBD, elevated the antibody response to a level more than that achieved with Al, CpG 7909, or poly(I:C) as adjuvants in mice. L2 plus Al with composite adjuvant compatibility with RBD markedly improved the immunogenicity of ZF2001; in particular, neutralizing antibody titers increased by about 44-fold for Omicron, and the combination also induced higher levels of antibodies than CpG 7909/poly(I:C) plus Al in mice. Moreover, L2 and L2 plus Al effectively improved the Th1 immune response, rather than the Th2 immune response. Taken together, L2, used as an adjuvant, enhanced the immune response of the SARS-CoV-2 recombinant RBD protein vaccine in mice. These findings should provide a basis for the R&D of novel RNA-based adjuvants.


Subject(s)
COVID-19 , Viral Vaccines , Adjuvants, Immunologic , Aluminum Hydroxide , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Mice , Mice, Inbred BALB C , RNA , Recombinant Proteins/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Tretinoin , Vaccines, Subunit/genetics , Vaccines, Synthetic/genetics
9.
Emerg Microbes Infect ; 11(1): 1145-1153, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1764465

ABSTRACT

Analysis of large-scale gene expression post vaccination can provide an overview of immune responses. We used transcriptional approaches to comprehensively analyze the innate immune response signatures elicited by protein subunit (PS) vaccine ZF2001 and an mRNA vaccine named RRV. A fine-grained time-dependent dissection of large-scale gene expression post immunization revealed that ZF001 induced MHC class II-related genes, including cd74 and H2-Aa, more expeditiously than the RRV. Notably, the RRV induced MHC class I-related genes such as Tap1/2, B2m, and H2-D1/K1. At day 21 post immunization, the titres of binding and neutralization antibody (NAb) induced by both vaccines were comparable, which were accordant with the expression level of genes essential to BCR/TCR signalling transduction and B/T cells activation at day 7. However, compared to ZF2001, the early responses of RRV were more robust, including the activation of pattern recognition receptors (PRRs), expression of genes involved in RNA degradation, and transcription inhibition, which are directly related to anti-viral signals. This pattern also coincided with the induction of cytokines by the RRV. Generally, the transcriptomic patterns of two very different vaccines mapped here provide a framework for establishing correlates between the induction of genes and protection, which can be tailored for evoking specific and potent immune responses against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Immunity, Innate , Protein Subunits/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Transcriptome , Vaccination , Vaccines, Subunit , Vaccines, Synthetic , mRNA Vaccines
10.
Vaccine ; 40(14): 2233-2239, 2022 03 25.
Article in English | MEDLINE | ID: covidwho-1757910

ABSTRACT

A reference standard is needed for quality control of protein subunit SARS-CoV-2 vaccines to meet urgent domestic needs. The Chinese National Institutes for Food and Drug Control (NIFDC) launched a project to establish the first reference material for the protein subunit SARS-CoV-2 vaccine to be used for calibration of antigen testing. The potency and stability of the national candidate standard (CS) were determined by collaborative calibration, and accelerated and freeze-thaw degradation studies. Moreover, a suitability study of the CS was performed. Eight laboratories in mainland China were asked to detect antigen content of CS using a common validated enzyme-linked immunosorbent assay (ELISA) kit established by NIFDC and in-house kits in the collaborative study. Six laboratories returned valid results, which established that the antigen content of the CS was 876,938 YU/mL, with good agreement across laboratories. In the suitability study, the CS exhibited excellent parallelism and a linear relationship with four samples produced by different expression systems and target proteins. In addition, good stability in the accelerated and freeze-thaw degradation study was observed. In conclusion, the CS was approved by the Biological Product Reference Standards Sub-Committee of the National Drug Reference Standards Committee as the first Chinese national standard for determining antigen content of protein subunit SARS-CoV-2 vaccines, with an assigned antigen content of 877,000 U/mL (Lot. 300050-202101). This standard will contribute to a standardized assessment of protein subunit SARS-CoV-2 vaccine in China and may provide experience for developing reference materials for antigen content detection of SARS-CoV-2 vaccine in other countries.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , Humans , Protein Subunits , Reference Standards , SARS-CoV-2
11.
Signal Transduct Target Ther ; 7(1): 69, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1721495

ABSTRACT

Emerging SARS-CoV-2 variants and the gradually decreasing neutralizing antibodies over time post vaccination have led to an increase in incidents of breakthrough infection across the world. To investigate the potential protective effect of the recombinant protein subunit COVID-19 vaccine targeting receptor-binding domain (RBD) (PS-RBD) and whole inactivated virus particle vaccine (IV) against the variant strains, in this study, rhesus macaques were immunized with PS-RBD or IV vaccine, followed by a Beta variant (B.1.351) challenge. Although neutralizing activity against the Beta variant was reduced compared with that against the prototype, the decreased viral load in both upper and lower respiratory tracts, milder pathological changes, and downregulated inflammatory cytokine levels in lung tissues after challenge demonstrated that PS-RBD and IV still provided effective protection against the Beta variant in the macaque model. Furthermore, PS-RBD-induced macaque sera possessed general binding and neutralizing activity to Alpha, Beta, Delta, and Omicron variants in our study, though the neutralizing antibody (NAb) titers declined by varying degrees, demonstrating potential protection of PS-RBD against current circulating variants of concern (VOCs). Interestingly, although the IV vaccine-induced extremely low neutralizing antibody titers against the Beta variant, it still showed reduction for viral load and significantly alleviated pathological change. Other correlates of vaccine-induced protection (CoP) like antibody-dependent cellular cytotoxicity (ADCC) and immune memory were both confirmed to be existing in IV vaccinated group and possibly be involved in the protective mechanism.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines , COVID-19 , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Animals , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , Humans , Macaca mulatta , Vaccines, Inactivated/immunology , Vaccines, Inactivated/pharmacology , Vaccines, Synthetic/immunology , Vaccines, Synthetic/pharmacology
12.
Emerg Microbes Infect ; 10(1): 1598-1608, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1316786

ABSTRACT

Since the outbreak of COVID-19, a variety of vaccine platforms have been developed. Amongst these, inactivated vaccines have been authorized for emergency use or conditional marketing in many countries. To further enhance the protective immune responses in populations that have completed vaccination regimen, we investigated the immunogenic characteristics of different vaccine platforms and tried homologous or heterologous boost strategy post two doses of inactivated vaccines in a mouse model. Our results showed that the humoral and cellular immune responses induced by different vaccines when administered individually differ significantly. In particular, inactivated vaccines showed relatively lower level of neutralizing antibody and T cell responses, but a higher IgG2a/IgG1 ratio compared with other vaccines. Boosting with either recombinant subunit, adenovirus vectored or mRNA vaccine after two-doses of inactivated vaccine further improved both neutralizing antibody and Spike-specific Th1-type T cell responses compared to boosting with a third dose of inactivated vaccine. Our results provide new ideas for prophylactic inoculation strategy of SARS-CoV-2 vaccines.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Immunization, Secondary , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Vaccines, Inactivated/immunology , Animals , Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , Cytokines , Disease Models, Animal , Female , Humans , Immunoglobulin G/immunology , Mice , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Vaccines, Inactivated/administration & dosage
13.
Emerg Microbes Infect ; 10(1): 629-637, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1124369

ABSTRACT

COVID-19 vaccines emerging from different platforms differ in efficacy, duration of protection, and side effects. To maximize the benefits of vaccination, we explored the utility of employing a heterologous prime-boost strategy in which different combinations of the four types of leading COVID-19 vaccine candidates that are undergoing clinical trials in China were tested in a mouse model. Our results showed that sequential immunization with adenovirus vectored vaccine followed by inactivated/recombinant subunit/mRNA vaccine administration specifically increased levels of neutralizing antibodies and promoted the modulation of antibody responses to predominantly neutralizing antibodies. Moreover, a heterologous prime-boost regimen with an adenovirus vector vaccine also improved Th1-biased T cell responses. Our results provide new ideas for the development and application of COVID-19 vaccines to control the SARS-CoV-2 pandemic.


Subject(s)
Adenovirus Vaccines/immunology , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , Immunization, Secondary/methods , Vaccines, Subunit/immunology , Vaccines, Synthetic/immunology , Adenovirus Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Interferon-gamma/blood , Lymphocyte Count , Mice , Mice, Inbred BALB C , SARS-CoV-2/immunology , T-Lymphocytes/immunology , T-Lymphocytes, Helper-Inducer/immunology , Vaccination/adverse effects , Vaccines, Subunit/administration & dosage , Vaccines, Synthetic/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL