Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Preprint in English | Other preprints | ID: ppcovidwho-294679

ABSTRACT

Simulation models from the early COVID-19 pandemic highlighted the urgency of applying non-pharmaceutical interventions (NPIs), but had limited empirical data. Here we use data from 2020-2021 to retrospectively model the impact of NPIs in Ontario, Canada. Our model represents age groups and census divisions in Ontario, and is parameterised with epidemiological, testing, demographic, travel, and mobility data. The model captures how individuals adopt NPIs in response to reported cases. We compare a scenario representing NPIs introduced within Ontario (closures of workplaces/schools, reopening of schools/workplaces with NPIs in place, individual-level NPI adherence) to counterfactual scenarios wherein alternative strategies (e.g. no closures, reliance on individual NPI adherence) are adopted to ascertain the extent to which NPIs reduced cases and deaths. Combined school/workplace closure and individual NPI adoption reduced the number of deaths in the best-case scenario for the case fatality rate (CFR) from 178548 [CI: 171845, 185298] to 3190 [CI: 3095, 3290] in the Spring 2020 wave. In the Fall 2020/Winter 2021 wave, the introduction of NPIs in workplaces/schools reduced the number of deaths from 20183 [CI: 19296, 21057] to 4102 [CI: 4075, 4131]. Deaths were several times higher in the worst-case CFR scenario. Each additional 9−16 (resp. 285−578) individuals who adopted NPIs in the first wave prevented one additional infection (resp., death). Our results show that the adoption of NPIs prevented a public health catastrophe. A less comprehensive approach, employing only closures or individual-level NPI adherence, would have resulted in a large number of cases and deaths.

2.
PLoS One ; 16(9): e0256889, 2021.
Article in English | MEDLINE | ID: covidwho-1523421

ABSTRACT

Vaccinating individuals with more exposure to others can be disproportionately effective, in theory, but identifying these individuals is difficult and has long prevented implementation of such strategies. Here, we propose how the technology underlying digital contact tracing could be harnessed to boost vaccine coverage among these individuals. In order to assess the impact of this "hot-spotting" proposal we model the spread of disease using percolation theory, a collection of analytical techniques from statistical physics. Furthermore, we introduce a novel measure which we call the efficiency, defined as the percentage decrease in the reproduction number per percentage of the population vaccinated. We find that optimal implementations of the proposal can achieve herd immunity with as little as half as many vaccine doses as a non-targeted strategy, and is attractive even for relatively low rates of app usage.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19/transmission , Contact Tracing/statistics & numerical data , Mass Vaccination/statistics & numerical data , COVID-19/immunology , Contact Tracing/instrumentation , Humans , Immunity, Herd , Mobile Applications , Models, Statistical , SARS-CoV-2/pathogenicity
3.
Indian J Urol ; 37(2): 197-198, 2021.
Article in English | MEDLINE | ID: covidwho-1377056
4.
Lancet Infect Dis ; 21(8): 1097-1106, 2021 08.
Article in English | MEDLINE | ID: covidwho-1164689

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, authorities must decide which groups to prioritise for vaccination in a shifting social-epidemiological landscape in which the success of large-scale non-pharmaceutical interventions requires broad social acceptance. We aimed to compare projected COVID-19 mortality under four different strategies for the prioritisation of SARS-CoV-2 vaccines. METHODS: We developed a coupled social-epidemiological model of SARS-CoV-2 transmission in which social and epidemiological dynamics interact with one another. We modelled how population adherence to non-pharmaceutical interventions responds to case incidence. In the model, schools and workplaces are also closed and reopened on the basis of reported cases. The model was parameterised with data on COVID-19 cases and mortality, SARS-CoV-2 seroprevalence, population mobility, and demography from Ontario, Canada (population 14·5 million). Disease progression parameters came from the SARS-CoV-2 epidemiological literature. We assumed a vaccine with 75% efficacy against disease and transmissibility. We compared vaccinating those aged 60 years and older first (oldest-first strategy), vaccinating those younger than 20 years first (youngest-first strategy), vaccinating uniformly by age (uniform strategy), and a novel contact-based strategy. The latter three strategies interrupt transmission, whereas the first targets a vulnerable group to reduce disease. Vaccination rates ranged from 0·5% to 5% of the population per week, beginning on either Jan 1 or Sept 1, 2021. FINDINGS: Case notifications, non-pharmaceutical intervention adherence, and lockdown undergo successive waves that interact with the timing of the vaccine programme to determine the relative effectiveness of the four strategies. Transmission-interrupting strategies become relatively more effective with time as herd immunity builds. The model predicts that, in the absence of vaccination, 72 000 deaths (95% credible interval 40 000-122 000) would occur in Ontario from Jan 1, 2021, to March 14, 2025, and at a vaccination rate of 1·5% of the population per week, the oldest-first strategy would reduce COVID-19 mortality by 90·8% on average (followed by 89·5% in the uniform, 88·9% in the contact-based, and 88·2% in the youngest-first strategies). 60 000 deaths (31 000-108 000) would occur from Sept 1, 2021, to March 14, 2025, in the absence of vaccination, and the contact-based strategy would reduce COVID-19 mortality by 92·6% on average (followed by 92·1% in the uniform, 91·0% in the oldest-first, and 88·3% in the youngest-first strategies) at a vaccination rate of 1·5% of the population per week. INTERPRETATION: The most effective vaccination strategy for reducing mortality due to COVID-19 depends on the time course of the pandemic in the population. For later vaccination start dates, use of SARS-CoV-2 vaccines to interrupt transmission might prevent more deaths than prioritising vulnerable age groups. FUNDING: Ontario Ministry of Colleges and Universities.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccination/statistics & numerical data , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/mortality , Humans , Middle Aged , Models, Theoretical , Young Adult
5.
Sci Rep ; 11(1): 6402, 2021 03 18.
Article in English | MEDLINE | ID: covidwho-1142454

ABSTRACT

There is a pressing need for evidence-based scrutiny of plans to re-open childcare centres during the COVID-19 pandemic. Here we developed an agent-based model of SARS-CoV-2 transmission within a childcare centre and households. Scenarios varied the student-to-educator ratio (15:2, 8:2, 7:3), family clustering (siblings together versus random assignment) and time spent in class. We also evaluated a primary school setting (with student-educator ratios 30:1, 15:1 and 8:1), including cohorts that alternate weekly. In the childcare centre setting, grouping siblings significantly reduced outbreak size and student-days lost. We identify an intensification cascade specific to classroom outbreaks of respiratory viruses with presymptomatic infection. In both childcare and primary school settings, each doubling of class size from 8 to 15 to 30 more than doubled the outbreak size and student-days lost (increases by factors of 2-5, depending on the scenario. Proposals for childcare and primary school reopening could be enhanced for safety by switching to smaller class sizes and grouping siblings.


Subject(s)
COVID-19/transmission , Child Day Care Centers/statistics & numerical data , Disease Outbreaks/statistics & numerical data , Models, Theoretical , Schools/statistics & numerical data , Adult , COVID-19/epidemiology , Child , Child, Preschool , Humans , Ontario/epidemiology , SARS-CoV-2 , Siblings
6.
Proc Natl Acad Sci U S A ; 117(39): 24575-24580, 2020 09 29.
Article in English | MEDLINE | ID: covidwho-744435

ABSTRACT

In the late stages of an epidemic, infections are often sporadic and geographically distributed. Spatially structured stochastic models can capture these important features of disease dynamics, thereby allowing a broader exploration of interventions. Here we develop a stochastic model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission among an interconnected group of population centers representing counties, municipalities, and districts (collectively, "counties"). The model is parameterized with demographic, epidemiological, testing, and travel data from Ontario, Canada. We explore the effects of different control strategies after the epidemic curve has been flattened. We compare a local strategy of reopening (and reclosing, as needed) schools and workplaces county by county, according to triggers for county-specific infection prevalence, to a global strategy of province-wide reopening and reclosing, according to triggers for province-wide infection prevalence. For trigger levels that result in the same number of COVID-19 cases between the two strategies, the local strategy causes significantly fewer person-days of closure, even under high intercounty travel scenarios. However, both cases and person-days lost to closure rise when county triggers are not coordinated and when testing rates vary among counties. Finally, we show that local strategies can also do better in the early epidemic stage, but only if testing rates are high and the trigger prevalence is low. Our results suggest that pandemic planning for the far side of the COVID-19 epidemic curve should consider local strategies for reopening and reclosing.


Subject(s)
Communicable Disease Control/organization & administration , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Betacoronavirus , COVID-19 , Cities/epidemiology , Communicable Disease Control/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Humans , Models, Statistical , Ontario/epidemiology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Prevalence , SARS-CoV-2 , Stochastic Processes , Travel
7.
Lancet Infect Dis ; 20(9): 994-995, 2020 09.
Article in English | MEDLINE | ID: covidwho-324568
SELECTION OF CITATIONS
SEARCH DETAIL
...