Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Add filters

Document Type
Year range
Preprint in English | medRxiv | ID: ppmedrxiv-21267937


BackgroundThe SARS-CoV-2 pandemic demonstrated the vulnerability of our societies to aerosol transmitted pathogens. With no less than 260mio known cases and > 5mio deaths, SARS-CoV-2 is a global catastrophe leading to human and economic losses unprecedented in recent history. Thus, effective methods to limit the spread of aerosol transmitted pathogens are needed. Universal masking and curfew laws are effective but no permanent solution. MethodsA mass producible LED light source emitting homogeneous parallel UV-C light was used as a "light-barrier" to block the spread of infectious aerosols. In an aerosol test channel, Gram-negative and Gram-positive bacteria as well as coronavirus were nebulized and inactivation rates were determined. FindingsWith air speeds of 0.1 m s-1 an exposure time of 1 s in the UV-C light is obtained. Reduction in CFU for E. coli was >3log10 and for S. aureus [~]2.8log10. Plug-forming-units of the murine coronavirus (Mouse Hepatitis Virus, MHV) were reduced by about 3log10. InterpretationThe concept of a UV-C light barrier to ward off infectious aerosols if feasible and possible with a light element as described here. Coupled with sensor based activation/deactivation, such a technology could greatly reduce the transmission rates of aerosol transmitted pathogens while not disturbing natural human behaviour. This is an interesting technology allowing a "new normal" in societies after/with SARS-CoV-2.

Preprint in English | bioRxiv | ID: ppbiorxiv-462420


SARS-CoV-2 Beta variant of concern (VOC) resists neutralization by major classes of antibodies from non-VOC COVID-19 patients and vaccinated individuals. Here, serum of Beta variant infected patients revealed reduced cross-neutralization of non-VOC virus. From these patients, we isolated Beta-specific and cross-reactive receptor-binding domain (RBD) antibodies. The Beta-specificity results from recruitment of novel VOC-specific clonotypes and accommodation of VOC-defining amino acids into a major non-VOC antibody class that is normally sensitive to these mutations. The Beta-elicited cross-reactive antibodies share genetic and structural features with non-VOC-elicited antibodies, including a public VH1-58 clonotype targeting the RBD ridge independent of VOC mutations. These findings advance our understanding of the antibody response to SARS-CoV-2 shaped by antigenic drift with implications for design of next-generation vaccines and therapeutics. One sentence summarySARS-CoV-2 Beta variant elicits lineage-specific antibodies and antibodies with neutralizing breadth against wild-type virus and VOCs.

Preprint in English | medRxiv | ID: ppmedrxiv-21256133


BackgroundIn the 2nd year of the Covid-19 pandemic, knowledge about the dynamics of the infection in the general population is still limited. Such information is essential for health planners, as many of those infected show no or only mild symptoms and thus, escape the surveillance system. We therefore aimed to describe the course of the pandemic in the Munich general population living in private households from April 2020 to January 2021. MethodsThe KoCo19 baseline study took place from April to June 2020 including 5313 participants (age 14 years and above). From November 2020 to January 2021, we could again measure SARS-CoV-2 antibody status in 4,433 of the baseline participants (response 83%). Participants were offered a self-sampling kit to take a capillary blood sample (dry blood spot; DBS). Blood was analysed using the Elecsys(R) Anti-SARS-CoV-2 assay (Roche). Questionnaire information on socio-demographics and potential risk factors assessed at baseline was available for all participants. In addition, follow-up information on health-risk taking behaviour and number of personal contacts outside the household (N=2768) as well as leisure time activities (N=1263) were collected in summer 2020. ResultsWeighted and adjusted (for specificity and sensitivity) SARS-CoV-2 sero-prevalence at follow-up was 3.6% (95% CI 2.9-4.3%) as compared to 1.8% (95% CI 1.3-3.4%) at baseline. 91% of those tested positive at baseline were also antibody-positive at follow-up. While sero-prevalence increased from early November 2021 to January 2021, no indication of geospatial clustering across the city of Munich was found, although cases clustered within households. Taking baseline result and time to follow-up into account, men and participants in the age group 20-34 years were at the highest risk of sero-positivity. In the sensitivity analyses, differences in health-risk taking behaviour, number of personal contacts and leisure time activities partly explained these differences. ConclusionThe number of citizens in Munich with SARS-CoV-2 antibodies was still below 5% during the 2nd wave of the pandemic. Antibodies remained present in the majority of baseline participants. Besides age and sex, potentially confounded by differences in behaviour, no major risk factors could be identified. Non-pharmaceutical public health measures are thus still important.

Preprint in English | medRxiv | ID: ppmedrxiv-21252080


BackgroundQuantitative serological assays detecting response to SARS-CoV-2 infection are urgently needed to quantify immunity. This study analyzed the performance and correlation of two independent quantitative anti-S1 assays in oligo-/asymptomatic individuals from a previously characterized population-based cohort. MethodsA total of 362 samples included 108 from individuals who had viral RNA detected in pharyngeal swabs, 111 negative controls and 143 samples with positive serology but not confirmed by RT-PCR. Blood plasma was tested with quantitative assays Euroimmun Anti-SARS-CoV-2 QuantiVac ELISA (IgG) (EI-S1-IgG-quant) and Roche Elecsys(R) Anti-SARS-CoV-2 CoV-2 S (Ro-RBD-Ig-quant), which were compared with each other and with confirmatory tests, including wild-type virus micro-neutralization (NT) and GenScript(R)cPass. Results were analyzed using square roots R of coefficients of determination for association among continuous variables and non-parametric tests for paired comparisons. ResultsQuantitative anti-S1 serology correlated well with each other (96%/97% for true-positives and true-negatives, respectively). Antibody titers decreased over time (from <30 days to >240 days after initial positive RT-PCR). Agreement with GenScript-cPass was 96%/99% for true-positives and true-negatives, respectively, for Ro-RBD-Ig-quant and 93%/97% for EI-S1-IgG-quant. Ro-RBD-Ig-quant allowed a distinct separation between positive and negative values, and less non-specific reactivity compared with EI-S1-IgG-quant. Raw values (with 95% CI) [≥]28.7 U/mL (22.6-36.4) for Ro-RBD-Ig-quant and [≥]49.8 U/mL (43.4-57.1) for EI-S1-IgG-quant predicted virus neutralization >1:5 in 95% of cases. ConclusionsBoth quantitative anti-S1 assays, Ro-RBD-Ig-quant and EI-S1-IgG-quant, may replace direct neutralization assays in quantitative measurement of immune protection against SARS-CoV-2 in certain circumstances in the future. Key pointsTwo quantitative anti-S1 assays showed similar performance and a high level of agreement with direct virus neutralization and surrogate neutralization tests, arguing for their utility in quantifying immune protection against SARS-CoV-2.

Preprint in English | medRxiv | ID: ppmedrxiv-21249735


BackgroundSerosurveys are essential to understand SARS-CoV-2 exposure and enable population-level surveillance, but currently available tests need further in-depth evaluation. We aimed to identify testing-strategies by comparing seven seroassays in a population-based cohort. MethodsWe analysed 6,658 samples consisting of true-positives (n=193), true-negatives (n=1,091), and specimens of unknown status (n=5,374). For primary testing, we used Euroimmun-Anti-SARS-CoV-2-ELISA-IgA/IgG and Roche-Elecsys-Anti-SARS-CoV-2; and virus-neutralisation, GeneScript(R)cPass, VIRAMED-SARS-CoV-2-ViraChip(R), and Mikrogen-recomLine-SARS-CoV-2-IgG, including common-cold CoVs, for confirmatory testing. Statistical modelling generated optimised assay cut-off-thresholds. FindingsSensitivity of Euroimmun-anti-S1-IgA was 64.8%, specificity 93.3%; for Euroimmun-anti-S1-IgG, sensitivity was 77.2/79.8% (manufacturers/optimised cut-offs), specificity 98.0/97.8%; Roche-anti-N sensitivity was 85.5/88.6%, specificity 99.8/99.7%. In true-positives, mean and median titres remained stable for at least 90-120 days after RT-PCR-positivity. Of true-positives with positive RT-PCR (<30 days), 6.7% did not mount detectable seroresponses. Virus-neutralisation was 73.8% sensitive, 100.0% specific (1:10 dilution). Neutralisation surrogate tests (GeneScript(R)cPass, Mikrogen-recomLine-RBD) were >94.9% sensitive, >98.1% specific. Seasonality had limited effects; cross-reactivity with common-cold CoVs 229E and NL63 in SARS-CoV-2 true-positives was significant. ConclusionOptimised cut-offs improved test performances of several tests. Non-reactive serology in true-positives was uncommon. For epidemiological purposes, confirmatory testing with virus-neutralisation may be replaced with GeneScript(R)cPass or recomLine-RBD. Head-to-head comparisons given here aim to contribute to the refinement of testing-strategies for individual and public health use.

Preprint in English | medRxiv | ID: ppmedrxiv-20082743


BackgroundThe SARS-CoV-2 pandemic is leading to the global introduction of public health interventions to prevent the spread of the virus and avoid the overload of health care systems, especially for the most severely affected patients. Scientific studies to date have focused primarily on describing the clinical course of patients, identifying treatment options and developing vaccines. In Germany, as in many other regions, current tests for SARS-CoV2 are not being conducted on a representative basis and in a longitudinal design. Furthermore, knowledge about the immune status of the population is lacking. Yet these data are needed to understand the dynamics of the pandemic and to thus appropriately design and evaluate interventions. For this purpose, we recently started a prospective population-based cohort in Munich, Germany, with the aim to better understand the state and dynamics of the pandemic. MethodsIn 100, randomly selected constituencies out of 755, 3,000 Munich households are identified via random route and offered enrollment into the study. All household members are asked to complete a baseline questionnaire and subjects [≥]14 years of age are asked to provide a venous blood sample of [≤]3 ml for the determination of SARS-CoV-2 IgG/IgA status. The residual plasma and the blood pellet are preserved for later genetic and molecular biological investigations. For twelve months, each household member is asked to keep a diary of daily symptoms, whereabouts and contacts via WebApp. If symptoms suggestive for COVID-19 are reported, family members, including children <14 years, are offered a pharyngeal swab taken at the Division of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, for molecular testing for SARS-CoV-2. In case of severe symptoms, participants will be transferred to a Munich hospital. For one year, the study teams re-visits the households for blood sampling every six weeks. DiscussionWith the planned study we will establish a reliable epidemiological tool to improve the understanding of the spread of SARS-CoV-2 and to better assess the effectiveness of public health measures as well as their socio-economic effects. This will support policy makers in managing the epidemic based on scientific evidence.