Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-326102

ABSTRACT

The introduction of vaccination has changed the landscape for COVID-19 infection, vastly altering the presentation of symptoms and reducing morbidity of infection. We estimate monthly trends and the impact of vaccination upon hospitalised mortality, controlling for baseline demographics and hospital load. We apply competing risks methods to comprehensive public health surveillance data on patients hospitalised with COVID-19 in England. Among a total of 259,727 individuals hospitalised with COVID-19, 51,948 (20.0%) experienced mortality in hospital, with the remainder being discharged or remaining in hospital by end of September 2021. Hospitalised fatality risk ranged from a high of 40.3% (95% confidence interval 39.4, 41.3%) among those admitted in March 2020 to a low of 8.1% (7.2, 9.0%) in June 2021. Older patients and those with multiple co-morbidities were more likely to die in hospital (46.5% for those aged 85 and over vs. 0.5% for those aged 15-24, and 6.3% for those with no comorbidity at baseline vs. 43.0% for those with a Charleson comorbidity index of 5 or above) or else experienced longer stays prior to discharge (median stays of between 5.1-10.4 days for those aged 85+ vs. 0.9-2.4 days for those aged 15-24). The hazard ratio for mortality following hospital admission was 0.72 (0.67, 0.77) among those admitted with a first vaccine dose, and 0.58 (0.54, 0.62) with a second vaccine dose, compared to a reference category of unvaccinated. The prognosis for patients hospitalised with COVID-19 in England has varied substantially throughout the pandemic and is confounded with age, sex, deprivation, baseline comorbidity and hospital load at admission. After controlling for other factors, outcomes for single and double vaccinated patients were significantly improved compared to unvaccinated patients.

2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-314261

ABSTRACT

Background: Trends in hospitalised case-fatality risk (HFR), risk of intensive care unit (ICU) admission and lengths of stay for patients hospitalised for COVID-19 in England over the pre-vaccination era are unknown. Methods: Data on hospital and ICU admissions with COVID-19 at 31 NHS trusts in England were collected by Public Health England's Severe Acute Respiratory Infections surveillance system and linked to death information. We applied parametric multi-state mixture models, accounting for censored outcomes and regressing risks and times between events on month of admission, geography, and baseline characteristics. Findings: 20,785 adults were admitted with COVID-19 in 2020. Between March and June/July/August estimated HFR reduced from 31.9% (95% confidence interval 30.3-33.5%) to 10.9% (9.4-12.7%), then rose steadily from 21.6% (18.4-25.5%) in September to 25.7% (23.0-29.2%) in December, with steeper increases among older patients, those with multi-morbidity and outside London/South of England. ICU admission risk reduced from 13.9% (12.8-15.2%) in March to 6.2% (5.3-7.1%) in May, rising to a high of 14.2% (11.1-17.2%) in September. Median length of stay in non-critical care increased during 2020, from 6.6 to 12.3 days for those dying, and from 6.1 to 9.3 days for those discharged. Interpretation: Initial improvements in patient outcomes, corresponding to developments in clinical practice, were not sustained throughout 2020, with HFR in December approaching the levels seen at the start of the pandemic, whilst median hospital stays have lengthened. The role of increased transmission, new variants, case-mix and hospital pressures in increasing COVID-19 severity requires urgent further investigation.

3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-313497

ABSTRACT

Clinical trials of a vaccine during an epidemic face particular challenges, such as the pressure to identify an effective vaccine quickly to control the epidemic, and the effect that time-space-varying infection incidence has on the power of a trial. We illustrate how the operating characteristics of different trial design elements may be evaluated using a network epidemic and trial simulation model, based on COVID-19 and individually randomised two-arm trials with a binary outcome. We show that "ring" recruitment strategies, prioritising participants at high risk of infection, can result in substantial improvement in terms of power, if sufficiently many contacts of observed cases are at high risk. In addition, we introduce a novel method to make more efficient use of the data from the earliest cases of infection observed in the trial, whose infection may have been too early to be vaccine-preventable. Finally, we compare several methods of response-adaptive randomisation, discussing their advantages and disadvantages in this two-arm context and identifying particular adaptation strategies that preserve power and estimation properties, while slightly reducing the number of infections, given an effective vaccine.

4.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-311567

ABSTRACT

Background: The aim of this study is to quantify the hospital burden of COVID-19 during the first wave and how it changed over calendar time;to interpret the results in light of the emergency measures introduced to manage the strain on secondary healthcare. Methods: : This is a cohort study of hospitalised confirmed cases of COVID-19 admitted from February-June 2020 and followed up till 17th July 2020, analysed using a mixture multi-state model. All hospital patients with confirmed COVID-19 disease in Regione Lombardia were involved, admitted from February-June 2020, with non-missing hospital of admission and non-missing admission date. Results: : The cohort consists of 40,550 patients hospitalised during the first wave. These patients had a median age of 69 (interquartile range 56-80) and were more likely to be men (60%) than women (40%). The hospital-fatality risk, averaged over all pathways through hospital, was 27.5% (95% CI 27.1-28.0%);and steadily decreased from 34.6% (32.5-36.6%) in February to 7.6% (6.3-10.6%) in June. Among surviving patients, median length of stay in hospital was 11.8 (11.6-12.3) days, compared to 8.1 (7.8-8.5) days in non-survivors. Averaged over final outcomes, median length of stay in hospital decreased from 21.4 (20.5-22.8) days in February to 5.2 (4.7-5.8) days in June. Conclusions: : The hospital burden, in terms of both risks of poor outcomes and lengths of stay in hospital, has been demonstrated to have decreased over the months of the first wave, perhaps reflecting improved treatment and management of COVID-19 cases, as well as reduced burden as the first wave waned. The quantified burden allows for planning of hospital beds needed for current and future waves of SARS-CoV-2.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-318164

ABSTRACT

Objective: To evaluate the relationship between coronavirus disease 2019 (COVID-19) diagnosis with SARS-CoV-2 variant B.1.1.7 (also known as Variant of Concern 202012/01) and the risk of hospitalisation compared to diagnosis with wildtype SARS-CoV-2 variants. Design: Retrospective cohort, analysed using stratified Cox regression. Setting: Community-based SARS-CoV-2 testing in England, individually linked with hospitalisation data. Participants: 839,278 laboratory-confirmed COVID-19 patients, of whom 36,233 had been hospitalised within 14 days, tested between 23rd November 2020 and 31st January 2021 and analysed at a laboratory with an available TaqPath assay that enables assessment of S-gene target failure (SGTF). SGTF is a proxy test for the B.1.1.7 variant. Patient data were stratified by age, sex, ethnicity, deprivation, region of residence, and date of positive test. Main outcome measures: Hospitalisation between 1 and 14 days after the first positive SARS-CoV-2 test. Results: 27,710 of 592,409 SGTF patients (4.7%) and 8,523 of 246,869 non-SGTF patients (3.5%) had been hospitalised within 1-14 days. The stratum-adjusted hazard ratio (HR) of hospitalisation was 1.52 (95% confidence interval [CI] 1.47 to 1.57) for COVID-19 patients infected with SGTF variants, compared to those infected with non-SGTF variants. The effect was modified by age (P<0.001), with HRs of 0.93-1.21 for SGTF compared to non-SGTF patients below age 20 years, 1.29 in those aged 20-29, and 1.45-1.65 in age groups 30 years or older. Conclusions: The results suggest that the risk of hospitalisation is higher for individuals infected with the B.1.1.7 variant compared to wildtype SARS-CoV-2, likely reflecting a more severe disease. The higher severity may be specific to adults above the age of 30.

6.
Nat Commun ; 13(1): 751, 2022 02 08.
Article in English | MEDLINE | ID: covidwho-1684022

ABSTRACT

Understanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , SARS-CoV-2/genetics , Universities , COVID-19/prevention & control , COVID-19/virology , Contact Tracing , Genome, Viral/genetics , Genomics , Humans , Phylogeny , RNA, Viral/genetics , Risk Factors , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Students , United Kingdom/epidemiology , Universities/statistics & numerical data
7.
Mol Biol Evol ; 39(3)2022 03 02.
Article in English | MEDLINE | ID: covidwho-1672233

ABSTRACT

Identifying linked cases of infection is a critical component of the public health response to viral infectious diseases. In a clinical context, there is a need to make rapid assessments of whether cases of infection have arrived independently onto a ward, or are potentially linked via direct transmission. Viral genome sequence data are of great value in making these assessments, but are often not the only form of data available. Here, we describe A2B-COVID, a method for the rapid identification of potentially linked cases of COVID-19 infection designed for clinical settings. Our method combines knowledge about infection dynamics, data describing the movements of individuals, and evolutionary analysis of genome sequences to assess whether data collected from cases of infection are consistent or inconsistent with linkage via direct transmission. A retrospective analysis of data from two wards at Cambridge University Hospitals NHS Foundation Trust during the first wave of the pandemic showed qualitatively different patterns of linkage between cases on designated COVID-19 and non-COVID-19 wards. The subsequent real-time application of our method to data from the second epidemic wave highlights its value for monitoring cases of infection in a clinical context.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitals , Humans , Pandemics , Retrospective Studies , SARS-CoV-2/genetics
9.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-295897

ABSTRACT

Assessing the impact of an intervention using time-series observational data on multiple units and outcomes is a frequent problem in many fields of scientific research. In this paper, we present a novel method to estimate intervention effects in such a setting by generalising existing approaches based on the factor analysis model and developing a Bayesian algorithm for inference. Our method is one of the few that can simultaneously: deal with outcomes of mixed type (continuous, binomial, count);increase efficiency in the estimates of the causal effects by jointly modelling multiple outcomes affected by the intervention;easily provide uncertainty quantification for all causal estimands of interest. We use the proposed approach to evaluate the impact that local tracing partnerships (LTP) had on the effectiveness of England's Test and Trace (TT) programme for COVID-19. Our analyses suggest that, overall, LTPs had a small positive impact on TT. However, there is considerable heterogeneity in the estimates of the causal effects over units and time.

10.
BMC Public Health ; 21(1): 1612, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1496155

ABSTRACT

BACKGROUND: The aim of this study is to quantify the hospital burden of COVID-19 during the first wave and how it changed over calendar time; to interpret the results in light of the emergency measures introduced to manage the strain on secondary healthcare. METHODS: This is a cohort study of hospitalised confirmed cases of COVID-19 admitted from February-June 2020 and followed up till 17th July 2020, analysed using a mixture multi-state model. All hospital patients with confirmed COVID-19 disease in Regione Lombardia were involved, admitted from February-June 2020, with non-missing hospital of admission and non-missing admission date. RESULTS: The cohort consists of 40,550 patients hospitalised during the first wave. These patients had a median age of 69 (interquartile range 56-80) and were more likely to be men (60%) than women (40%). The hospital-fatality risk, averaged over all pathways through hospital, was 27.5% (95% CI 27.1-28.0%); and steadily decreased from 34.6% (32.5-36.6%) in February to 7.6% (6.3-10.6%) in June. Among surviving patients, median length of stay in hospital was 11.8 (11.6-12.3) days, compared to 8.1 (7.8-8.5) days in non-survivors. Averaged over final outcomes, median length of stay in hospital decreased from 21.4 (20.5-22.8) days in February to 5.2 (4.7-5.8) days in June. CONCLUSIONS: The hospital burden, in terms of both risks of poor outcomes and lengths of stay in hospital, has been demonstrated to have decreased over the months of the first wave, perhaps reflecting improved treatment and management of COVID-19 cases, as well as reduced burden as the first wave waned. The quantified burden allows for planning of hospital beds needed for current and future waves of SARS-CoV-2 i.


Subject(s)
COVID-19 , Cohort Studies , Female , Hospitalization , Hospitals , Humans , Male , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL